2.1编写Lucene工具类
在编写工具类的时候,值得注意的地方:
- 当我们得到了对象的属性的时候,就可以把属性的get方法封装起来
- 得到get方法,就可以调用它,得到对应的值
- 在操作对象的属性时,我们要使用暴力访问
- 如果有属性,值,对象这三个变量,我们记得使用BeanUtils组件
import org.apache.commons.beanutils.BeanUtils; import org.apache.lucene.analysis.Analyzer; import org.apache.lucene.analysis.standard.StandardAnalyzer; import org.apache.lucene.document.Document; import org.apache.lucene.index.IndexWriter; import org.apache.lucene.store.Directory; import org.apache.lucene.store.FSDirectory; import org.apache.lucene.util.Version; import org.junit.Test; import java.io.File; import java.lang.reflect.Field; import java.lang.reflect.Method; /** * Created by ozc on 2017/7/12. */ /** * 使用单例事例模式 * */ public class LuceneUtils { private static Directory directory; private static Analyzer analyzer; private static IndexWriter.MaxFieldLength maxFieldLength; private LuceneUtils() {} static{ try { directory = FSDirectory.open(new File("E:/createIndexDB")); analyzer = new StandardAnalyzer(Version.LUCENE_30); maxFieldLength = IndexWriter.MaxFieldLength.LIMITED; } catch (Exception e) { e.printStackTrace(); } } public static Directory getDirectory() { return directory; } public static Analyzer getAnalyzer() { return analyzer; } public static IndexWriter.MaxFieldLength getMaxFieldLength() { return maxFieldLength; } /** * @param object 传入的JavaBean类型 * @return 返回Document对象 */ public static Document javaBean2Document(Object object) { try { Document document = new Document(); //得到JavaBean的字节码文件对象 Class<?> aClass = object.getClass(); //通过字节码文件对象得到对应的属性【全部的属性,不能仅仅调用getFields()】 Field[] fields = aClass.getDeclaredFields(); //得到每个属性的名字 for (Field field : fields) { String name = field.getName(); //得到属性的值【也就是调用getter方法获取对应的值】 String method = "get" + name.substring(0, 1).toUpperCase() + name.substring(1); //得到对应的值【就是得到具体的方法,然后调用就行了。因为是get方法,没有参数】 Method aClassMethod = aClass.getDeclaredMethod(method, null); String value = aClassMethod.invoke(object).toString(); System.out.println(value); //把数据封装到Document对象中。 document.add(new org.apache.lucene.document.Field(name, value, org.apache.lucene.document.Field.Store.YES, org.apache.lucene.document.Field.Index.ANALYZED)); } return document; } catch (Exception e) { e.printStackTrace(); } return null; } /** * @param aClass 要解析的对象类型,要用户传入进来 * @param document 将Document对象传入进来 * @return 返回一个JavaBean */ public static Object Document2JavaBean(Document document, Class aClass) { try { //创建该JavaBean对象 Object obj = aClass.newInstance(); //得到该JavaBean所有的成员变量 Field[] fields = aClass.getDeclaredFields(); for (Field field : fields) { //设置允许暴力访问 field.setAccessible(true); String name = field.getName(); String value = document.get(name); //使用BeanUtils把数据封装到Bean中 BeanUtils.setProperty(obj, name, value); } return obj; } catch (Exception e) { e.printStackTrace(); } return null; } @Test public void test() { User user = new User(); LuceneUtils.javaBean2Document(user); } }
2.2使用LuceneUtils改造程序
@Test public void createIndexDB() throws Exception { //把数据填充到JavaBean对象中 User user = new User("2", "钟福成2", "未来的程序员2"); Document document = LuceneUtils.javaBean2Document(user); /** * IndexWriter将我们的document对象写到硬盘中 * * 参数一:Directory d,写到硬盘中的目录路径是什么 * 参数二:Analyzer a, 以何种算法来对document中的原始记录表数据进行拆分成词汇表 * 参数三:MaxFieldLength mfl 最多将文本拆分出多少个词汇 * * */ IndexWriter indexWriter = new IndexWriter(LuceneUtils.getDirectory(), LuceneUtils.getAnalyzer(), LuceneUtils.getMaxFieldLength()); //将Document对象通过IndexWriter对象写入索引库中 indexWriter.addDocument(document); //关闭IndexWriter对象 indexWriter.close(); } @Test public void findIndexDB() throws Exception { //创建IndexSearcher对象 IndexSearcher indexSearcher = new IndexSearcher(LuceneUtils.getDirectory()); //创建QueryParser对象 QueryParser queryParser = new QueryParser(Version.LUCENE_30, "userName", LuceneUtils.getAnalyzer()); //给出要查询的关键字 String keyWords = "钟"; //创建Query对象来封装关键字 Query query = queryParser.parse(keyWords); //用IndexSearcher对象去索引库中查询符合条件的前100条记录,不足100条记录的以实际为准 TopDocs topDocs = indexSearcher.search(query, 100); //获取符合条件的编号 for (int i = 0; i < topDocs.scoreDocs.length; i++) { ScoreDoc scoreDoc = topDocs.scoreDocs[i]; int no = scoreDoc.doc; //用indexSearcher对象去索引库中查询编号对应的Document对象 Document document = indexSearcher.doc(no); //将Document对象中的所有属性取出,再封装回JavaBean对象中去 User user = (User) LuceneUtils.Document2JavaBean(document, User.class); System.out.println(user); } }
三、索引库优化
我们已经可以创建索引库并且从索引库读取对象的数据了。其实索引库还有地方可以优化的….
3.1合并文件
我们把数据添加到索引库中的时候,每添加一次,都会帮我们自动创建一个cfs文件…
这里写图片描述
这样其实不好,因为如果数据量一大,我们的硬盘就有非常非常多的cfs文件了…..其实索引库会帮我们自动合并文件的,默认是10个。
如果,我们想要修改默认的值,我们可以通过以下的代码修改:
//索引库优化 indexWriter.optimize(); //设置合并因子为3,每当有3个cfs文件,就合并 indexWriter.setMergeFactor(3);
3.2设置内存索引库
我们的目前的程序是直接与文件进行操作,这样对IO的开销其实是比较大的。而且速度相对较慢….我们可以使用内存索引库来提高我们的读写效率…
对于内存索引库而言,它的速度是很快的,因为我们直接操作内存…但是呢,我们要将内存索引库是要到硬盘索引库中保存起来的。当我们读取数据的时候,先要把硬盘索引库的数据同步到内存索引库中去的。
这里写图片描述
Article article = new Article(1,"培训","传智是一家Java培训机构"); Document document = LuceneUtil.javabean2document(article); Directory fsDirectory = FSDirectory.open(new File("E:/indexDBDBDBDBDBDBDBDB")); Directory ramDirectory = new RAMDirectory(fsDirectory); IndexWriter fsIndexWriter = new IndexWriter(fsDirectory,LuceneUtil.getAnalyzer(),true,LuceneUtil.getMaxFieldLength()); IndexWriter ramIndexWriter = new IndexWriter(ramDirectory,LuceneUtil.getAnalyzer(),LuceneUtil.getMaxFieldLength()); ramIndexWriter.addDocument(document); ramIndexWriter.close(); fsIndexWriter.addIndexesNoOptimize(ramDirectory); fsIndexWriter.close();
四、分词器
我们在前面中就已经说过了,在把数据存到索引库的时候,我们会使用某些算法,将原始记录表的数据存到词汇表中…..那么这些算法总和我们可以称之为分词器
分词器: ** 采用一种算法,将中英文本中的字符拆分开来,形成词汇,以待用户输入关健字后搜索**
对于为什么要使用分词器,我们也明确地说过:由于用户不可能把我们的原始记录数据完完整整地记录下来,于是他们在搜索的时候,是通过关键字进行对原始记录表的查询….此时,我们就采用分词器来最大限度地匹配相关的数据
这里写图片描述
4.1分词器流程
- 步一:按分词器拆分出词汇
- 步二:去除停用词和禁用词
- 步三:如果有英文,把英文字母转为小写,即搜索不分大小写
4.2分词器API
我们在选择分词算法的时候,我们会发现有非常非常多地分词器API,我们可以用以下代码来看看该分词器是怎么将数据分割的:
private static void testAnalyzer(Analyzer analyzer, String text) throws Exception { System.out.println("当前使用的分词器:" + analyzer.getClass()); TokenStream tokenStream = analyzer.tokenStream("content",new StringReader(text)); tokenStream.addAttribute(TermAttribute.class); while (tokenStream.incrementToken()) { TermAttribute termAttribute = tokenStream.getAttribute(TermAttribute.class); System.out.println(termAttribute.term()); } }
在实验完之后,我们就可以选择恰当的分词算法了….
4.3IKAnalyzer分词器
这是一个第三方的分词器,我们如果要使用的话需要导入对应的jar包
- IKAnalyzer3.2.0Stable.jar
- 步二:将IKAnalyzer.cfg.xml和stopword.dic和xxx.dic文件复制到MyEclipse的src目录下,再进行配置,在配置时,首行需要一个空行
这个第三方的分词器有什么好呢????他是中文首选的分词器…也就是说:他是按照中文的词语来进行拆分的!
五、对搜索结果进行处理
5.1搜索结果高亮
我们在使用SQL时,搜索出来的数据是没有高亮的…而我们使用Lucene,搜索出来的内容我们可以设置关键字为高亮…这样一来就更加注重用户体验了!
String keywords = "钟福成"; List<Article> articleList = new ArrayList<Article>(); QueryParser queryParser = new QueryParser(LuceneUtil.getVersion(),"content",LuceneUtil.getAnalyzer()); Query query = queryParser.parse(keywords); IndexSearcher indexSearcher = new IndexSearcher(LuceneUtil.getDirectory()); TopDocs topDocs = indexSearcher.search(query,1000000); //设置关键字高亮 Formatter formatter = new SimpleHTMLFormatter("<font color='red'>","</font>"); Scorer scorer = new QueryScorer(query); Highlighter highlighter = new Highlighter(formatter,scorer); for(int i=0;i<topDocs.scoreDocs.length;i++){ ScoreDoc scoreDoc = topDocs.scoreDocs[i]; int no = scoreDoc.doc; Document document = indexSearcher.doc(no); //设置内容高亮 String highlighterContent = highlighter.getBestFragment(LuceneUtil.getAnalyzer(),"content",document.get("content")); document.getField("content").setValue(highlighterContent); Article article = (Article) LuceneUtil.document2javabean(document,Article.class); articleList.add(article); } for(Article article : articleList){ System.out.println(article); } }
5.2搜索结果摘要
如果我们搜索出来的文章内容太大了,而我们只想显示部分的内容,那么我们可以对其进行摘要…
值得注意的是:搜索结果摘要需要与设置高亮一起使用
String keywords = "钟福成"; List<Article> articleList = new ArrayList<Article>(); QueryParser queryParser = new QueryParser(LuceneUtil.getVersion(),"content",LuceneUtil.getAnalyzer()); Query query = queryParser.parse(keywords); IndexSearcher indexSearcher = new IndexSearcher(LuceneUtil.getDirectory()); TopDocs topDocs = indexSearcher.search(query,1000000); Formatter formatter = new SimpleHTMLFormatter("<font color='red'>","</font>"); Scorer scorer = new QueryScorer(query); Highlighter highlighter = new Highlighter(formatter,scorer); //设置摘要 Fragmenter fragmenter = new SimpleFragmenter(4); highlighter.setTextFragmenter(fragmenter); for(int i=0;i<topDocs.scoreDocs.length;i++){ ScoreDoc scoreDoc = topDocs.scoreDocs[i]; int no = scoreDoc.doc; Document document = indexSearcher.doc(no); String highlighterContent = highlighter.getBestFragment(LuceneUtil.getAnalyzer(),"content",document.get("content")); document.getField("content").setValue(highlighterContent); Article article = (Article) LuceneUtil.document2javabean(document,Article.class); articleList.add(article); } for(Article article : articleList){ System.out.println(article); } }
5.3搜索结果排序
我们搜索引擎肯定用得也不少,使用不同的搜索引擎来搜索相同的内容。他们首页的排行顺序也会不同…这就是它们内部用了搜索结果排序….
影响网页的排序有非常多种:
- head/meta/【keywords关键字】
- 网页的标签整洁
- 网页执行速度
- 采用div+css
- 等等等等
而在Lucene中我们就可以设置相关度得分来使不同的结果对其进行排序:
IndexWriter indexWriter = new IndexWriter(LuceneUtil.getDirectory(),LuceneUtil.getAnalyzer(),LuceneUtil.getMaxFieldLength()); //为结果设置得分 document.setBoost(20F); indexWriter.addDocument(document); indexWriter.close();
当然了,我们也可以按单个字段排序:
//true表示降序 Sort sort = new Sort(new SortField("id",SortField.INT,true)); TopDocs topDocs = indexSearcher.search(query,null,1000000,sort);
也可以按多个字段排序:在多字段排序中,只有第一个字段排序结果相同时,第二个字段排序才有作用 提倡用数值型排序
Sort sort = new Sort(new SortField("count",SortField.INT,true),new SortField("id",SortField.INT,true)); TopDocs topDocs = indexSearcher.search(query,null,1000000,sort);
5.4条件搜索
在我们的例子中,我们使用的是根据一个关键字来对某个字段的内容进行搜索。语法类似于下面:
QueryParser queryParser = new QueryParser(LuceneUtil.getVersion(),"content",LuceneUtil.getAnalyzer());
其实,我们也可以使用关键字来对多个字段进行搜索,也就是多条件搜索。我们实际中常常用到的是多条件搜索,多条件搜索可以使用我们最大限度匹配对应的数据!
QueryParser queryParser = new MultiFieldQueryParser(LuceneUtil.getVersion(),new String[]{"content","title"},LuceneUtil.getAnalyzer());
六、总结
- Lucene是全文索引引擎的祖先,后面的Solr、Elasticsearch都是基于Lucene的(后面会有一篇讲Elasticsearch的,敬请期待~)
- Lucene中存的就是一系列的二进制压缩文件和一些控制文件,这些内容统称为索引库,索引库又分了两个部分:
- 原始记录
- 词汇表
- 了解索引库的优化方式:1、合并文件 2、设置内存索引库
- Lucene的分词器有非常多种,选择自己适合的一种进行分词
- 查询出来的结果可对其设置高亮、摘要、排序
这篇这是Lucene的冰山一角,一般现在用的可能都是Solr、Elasticsearch的了,但想要更加深入了解Lucene可翻阅其他资料哦~