【算法】LCP 44. 开幕式焰火(java / c / c++ / python / go / rust)

简介: 「力扣挑战赛」开幕式开始了,空中绽放了一颗二叉树形的巨型焰火。给定一棵二叉树 root 代表焰火,节点值表示巨型焰火这一位置的颜色种类。请帮小扣计算巨型焰火有多少种不同的颜色。

LCP 44. 开幕式焰火:

「力扣挑战赛」开幕式开始了,空中绽放了一颗二叉树形的巨型焰火。
给定一棵二叉树 root 代表焰火,节点值表示巨型焰火这一位置的颜色种类。请帮小扣计算巨型焰火有多少种不同的颜色。

样例 1

 输入:
    
   root = [1,3,2,1,null,2]
    
 输出:
    
   3
    
 解释:

   焰火中有 3 个不同的颜色,值分别为 1、2、3

样例 2

输入:

  root = [3,3,3]
  
输出:
  
  1
  
解释:

  焰火中仅出现 1 个颜色,值为 3

提示

  • 1 <= 节点个数 <= 1000
  • 1 <= Node.val <= 1000

分析

  • 翻译一下题意就是看整个树里一共有几种不同的值。
  • 所以考察了2个方面的知识点,一个是二叉树数据结构,一个是统计计数。
  • 最容易想到的是用Set之类的数据结构。
  • 循环和递归都可以。
  • 提示中已经给定了节点值的范围,所以可以使用数组这种底层数据结构去替代Set等数据结构。
  • 在遍历树的过程中判断计数,或者在最后再对计数的数据结构遍历计数,这两种方式都可以,在遍历树中判断计数受节点的数量影响,在最后再遍历计数数据结构计数受节点值取值范围影响。

题解

java

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
class Solution {
    public int numColor(TreeNode root) {
        int ans = 0;
        
        boolean[] flag = new boolean[1001];
        dfs(root, flag);
        for (boolean f : flag) {
            if (f) {
                ans++;
            }
        }
        
        return ans;
    }

    private void dfs(TreeNode root, boolean[] flag) {
        if (root != null) {
            flag[root.val] = true;
            dfs(root.left, flag);
            dfs(root.right, flag);
        }
    }
}

c

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     struct TreeNode *left;
 *     struct TreeNode *right;
 * };
 */

int numColor(struct TreeNode *root) {
    int ans = 0;

    bool flag[1001] = {false};
    dfs(root, flag);
    for (int i = 1; i < 1001; ++i) {
        if (flag[i]) {
            ans++;
        }
    }

    return ans;
}

void dfs(struct TreeNode *root, bool *flag) {
    if (root) {
        flag[root->val] = true;
        dfs(root->left, flag);
        dfs(root->right, flag);
    }
}

c++

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    int numColor(struct TreeNode *root) {
        int ans = 0;
        
        bool flag[1001] = {false};
        dfs(root, flag);
        for (bool f : flag) {
            if (f) {
                ans++;
            }
        }
        
        return ans;
    }

    void dfs(struct TreeNode *root, bool *flag) {
        if (root != nullptr) {
            flag[root->val] = true;
            dfs(root->left, flag);
            dfs(root->right, flag);
        }
    }
};

python

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, x):
#         self.val = x
#         self.left = None
#         self.right = None
class Solution:
    def numColor(self, root: TreeNode) -> int:
        ans = 0

        flag = [False] * 1001

        def dfs(n):
            if n:
                flag[n.val] = True
                dfs(n.left)
                dfs(n.right)

        dfs(root)

        for f in flag:
            if f:
                ans += 1

        return ans

go

/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *     Val int
 *     Left *TreeNode
 *     Right *TreeNode
 * }
 */
func numColor(root *TreeNode) int {
    ans := 0

    var flag [1001]bool
    var dfs func(*TreeNode)
    dfs = func(n *TreeNode) {
        if n == nil {
            return
        }
        flag[n.Val] = true
        dfs(n.Left)
        dfs(n.Right)
    }

    dfs(root)

    for i := 1; i < 1001; i++ {
        if flag[i] {
            ans++
        }
    }

    return ans
}

rust

// Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
//   pub val: i32,
//   pub left: Option<Rc<RefCell<TreeNode>>>,
//   pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
//   #[inline]
//   pub fn new(val: i32) -> Self {
//     TreeNode {
//       val,
//       left: None,
//       right: None
//     }
//   }
// }
use std::rc::Rc;
use std::cell::RefCell;
impl Solution {
    pub fn num_color(root: Option<Rc<RefCell<TreeNode>>>) -> i32 {
        let mut ans = 0;

        let mut flag = vec![false; 1001];
        Solution::dfs(root, &mut flag);
        flag.into_iter().for_each(|f| {
            if f { ans += 1; }
        });

        ans
    }

    fn dfs(root: Option<Rc<RefCell<TreeNode>>>, flag: &mut Vec<bool>) {
        if let Some(root) = root {
            let root = root.borrow();
            flag[root.val as usize] = true;
            Solution::dfs(root.left.clone(), flag);
            Solution::dfs(root.right.clone(), flag);
        }
    }
}

在这里插入图片描述


原题传送门:https://leetcode-cn.com/problems/sZ59z6/


非常感谢你阅读本文~
放弃不难,但坚持一定很酷~
希望我们大家都能每天进步一点点~
本文由 二当家的白帽子:https://developer.aliyun.com/profile/sqd6avc7qgj7y 博客原创~

相关文章
|
9天前
|
Java Linux Python
Linux环境下 代码java调用python出错
Linux环境下 代码java调用python出错
24 3
|
16天前
|
Java Android开发 C++
🚀Android NDK开发实战!Java与C++混合编程,打造极致性能体验!📊
在Android应用开发中,追求卓越性能是不变的主题。本文介绍如何利用Android NDK(Native Development Kit)结合Java与C++进行混合编程,提升应用性能。从环境搭建到JNI接口设计,再到实战示例,全面展示NDK的优势与应用技巧,助你打造高性能应用。通过具体案例,如计算斐波那契数列,详细讲解Java与C++的协作流程,帮助开发者掌握NDK开发精髓,实现高效计算与硬件交互。
58 1
|
22天前
|
SQL JavaScript 前端开发
用Java、Python来开发Hive应用
用Java、Python来开发Hive应用
22 6
|
22天前
|
NoSQL JavaScript Java
Java Python访问MongoDB
Java Python访问MongoDB
19 4
|
2月前
|
安全 Java Go
Java&Go泛型对比
总的来说,Java和Go在泛型的实现和使用上各有特点,Java的泛型更注重于类型安全和兼容性,而Go的泛型在保持类型安全的同时,提供了更灵活的类型参数和类型集的概念,同时避免了运行时的性能开销。开发者在使用时可以根据自己的需求和语言特性来选择使用哪种语言的泛型特性。
38 7
|
2月前
|
Rust 安全 Java
Java代码规范--排版,命名.:Rust能否撼动C++的王座?
系统编程是计算机科学的核心,C++长期占据主导地位,但其内存安全问题备受诟病。Rust以安全性为核心,通过所有权和生命周期概念避免了野指针和内存泄漏。此外,Rust的并发模型和日益丰富的生态系统使其成为现代系统编程的新选择,尤其在安全性和并发性方面表现出色。尽管C++依然强大,但Rust为开发者提供了更安全、易管理的选项,未来有望推动更多系统级应用的发展。
17 0
|
2月前
|
运维 Java API
探索Java中的Lambda表达式自动化运维的魔法:如何利用Python脚本提升效率
【8月更文挑战第29天】Lambda表达式是Java 8中引入的一个新特性,它允许我们将功能作为方法参数,或者代码作为数据来处理。在这篇文章中,我们将深入探讨Java中的Lambda表达式,包括它的语法、使用场景以及如何在实际编程中应用它。我们将通过一些简单的示例来演示Lambda表达式的强大功能和灵活性,让你更好地理解和掌握这一新特性。
|
3天前
|
传感器 算法 C语言
基于无线传感器网络的节点分簇算法matlab仿真
该程序对传感器网络进行分簇,考虑节点能量状态、拓扑位置及孤立节点等因素。相较于LEACH算法,本程序评估网络持续时间、节点死亡趋势及能量消耗。使用MATLAB 2022a版本运行,展示了节点能量管理优化及网络生命周期延长的效果。通过簇头管理和数据融合,实现了能量高效和网络可扩展性。
|
1月前
|
算法 BI Serverless
基于鱼群算法的散热片形状优化matlab仿真
本研究利用浴盆曲线模拟空隙外形,并通过鱼群算法(FSA)优化浴盆曲线参数,以获得最佳孔隙度值及对应的R值。FSA通过模拟鱼群的聚群、避障和觅食行为,实现高效全局搜索。具体步骤包括初始化鱼群、计算适应度值、更新位置及判断终止条件。最终确定散热片的最佳形状参数。仿真结果显示该方法能显著提高优化效率。相关代码使用MATLAB 2022a实现。
|
1月前
|
算法 数据可视化
基于SSA奇异谱分析算法的时间序列趋势线提取matlab仿真
奇异谱分析(SSA)是一种基于奇异值分解(SVD)和轨迹矩阵的非线性、非参数时间序列分析方法,适用于提取趋势、周期性和噪声成分。本项目使用MATLAB 2022a版本实现从强干扰序列中提取趋势线,并通过可视化展示了原时间序列与提取的趋势分量。代码实现了滑动窗口下的奇异值分解和分组重构,适用于非线性和非平稳时间序列分析。此方法在气候变化、金融市场和生物医学信号处理等领域有广泛应用。
下一篇
无影云桌面