最近Reddit上的一个帖子火了! 一个小哥没有MLPHD,没有MLMaster,甚至没有任何类型的MLDegree—仅凭在EE上获得的学士学位,就从 「DeepMind」get 到了一份研究型工程师的工作! 他在Reddit的论坛上分享了自己的经历,他是如何让在没有任何特别优秀的学术背景下,成功找到一份研究工程师的工作的。
文中,他分享了一些关于「他是谁」的背景以及到目前为止的学习经历!从把「机器学习」作为是副业到Deepmind的专业RSWE。尽管没有扎实的基础和优秀的学术背景,但却在短时间内实现了自己的目标。 同时,他还附加了很多从2018年第一次接触ML到现在积累的相关课程链接,以及当前ML(例如 GNN)的最新研究进展。最后,他和大家分享了自己从前期准备到后期面试DeepMind 的详细过程。如果你也想get到自己满意的那份工作,就跟着我一起去看看吧。 全文他强调自己不是一个有「计算天赋」的人,凭着对机器学习的热情,「从自学软件编程,完成Andrew Ng的所有Coursera课程,到研究专业论文,参与微软的ML夏令营」,被派驻到「ICCV2019」会议,在微软展台演示HoloLens2,并成功转正ML工程师。 所以,是发生了什么事情?让他的心态发生了改变?又是什么push他努力学习和工作,成功转型的呢? 他说,因为Gary Vaynerchuk的鼓励。 他在网上分享自己的经历,参加微软的公开演讲。相机,照相,反光板,这些东西打破了他的舒适区,日积月累,他学会了公开交谈(面试的必备技能)以及基本的数学知识(专业技能),得到了这份完美的工作。 好吧,你可能会说:嗯,故事很励志,但是没有干货啊。 https://gordicaleksa.medium.com/5-tips-to-boost-your-learning-d6eb5edfe6d 瞧,这不就是干货么? 以AI为例,内容涵盖「输入模式」和「输出模式」的周期学习模式。 输入模式:摄取信息。目标是对子领域(博客、视频)的结构有一个高层次的理解,或者对手头的主题(研究论文、书籍等)有一个深入的了解。 输出模式:分享在输入模式期间积累的信息。第一步,教别人!创建分享文件,如YouTube视频、GitHub项目,和blog 。以及在 LinkedIn 上高频率的更新。当然,Twitter和Discord也需要涉及。 做完这些工作后,别忘了,在macro的末尾附加几篇原创blog,总结所写的内容。这将帮助你更好的将干货用到实际工作中。 不需要多么深入。你只需要学习NST (Neural Style Transfer)、DeepDream、GANs (Generative Adversarial Networks)、NLP & transformers、Graph/Geometric ML、RL (Reinforcement Learning)...... 呃.....俗话说的好,不积跬步,何以至千里?
NST
首先,你要做的是,阅读大量的研究论文,开发3个不同类型的projects,然后Github开源,在YouTube上建立一个NST播放列表。准备工作差不多就可以结束了。 紧接着,完善PyTorch专业知识,学习CNN和优化方法,提高演讲技巧,阅读研究论文,做到从里到外全面提高SE技能。 例子如下,最后,编写代码合成NST图像:
DEEPDREAM
阅读blog,分析DeepDream子版块,并探索各种代码库。 你可能会发现,多数原代码是用Torch和Lua编写的。为了解决这个问题,你可以切换到 Linux,让它来为你工作。过程有点艰难,不过你可以学到很多东西, 最终,你可以使用自己的代码生成一副令人着迷的图像。
GAN
你需要做的很简单,就是阅读所有基础论文以及其他不太相关的论文,并尽自己最大的努力,尝试Vanilla Gan,CGAN(条件GAN)和DCGAN模型。 一些辅助方式仅供参考:
- 在每个macro的末尾附加一篇blog ,总结自己所学到的知识。
- 阅读论文时,随时在YouTube上记录它们。通过这种方式,你会学得更好,也会帮助到更多的人。
- 在macro中间开源一个project。在那之后,你会发现,你读过的所有paper都变得有意思了。