堆排序-算法导论

简介:

在看搜索引擎做查询结果排序的用到了堆排序,特来复习一下。
那么在深入堆排序之前先来列举一下常见的排序方法,
Insertion sort ,最简单直观的排序方法,时间复杂度最坏O(n2 ),in place(Recall that a sorting algorithm sorts in place if only a constant number of elements of the input array are ever stored outside the array.)就是说除了输入数组,仅还需耗费常数大小的空间, 这里对于insert sorting,应该只在交换element时,需要一个element的额外的暂存空间。此方法适用于size很小的输入。
Merge sort ,基于分治的一种排序算法,时间复杂度O(nlgn),但不是in place的,明显merge的时候需要较多的额外空间。
Heap sort ,我们下面要介绍的,时间复杂度O(nlgn), 而且是in place的。
Quick sort , 快排,最差时间复杂度O(n2 ),平均的时间复杂度为O(nlgn),但是据说在实际引用时比堆排序高效。

下面开始介绍heap sort,
那么堆排序当然核心就是堆这个数据结构,堆是个完全二叉树,而且每个节点都比左右子节点大(或小),因为堆分为max堆和min堆。
完全二叉树有个非常高效的存储方法,就是数组,一般的树都要用链表去存储。
对于heap sort的输入数组,如A[16,4,10,14,7,9,3,2,8,1],要进行堆排序,首先要建堆,建堆可以分为两步:
将输入数组抽象成完全二叉树
建堆BUILD-MAX-HEAP 
那么上面的输入数组可以抽象成如下的二叉树,
            16
         4     10
       14   7  9   3
      2  8 1 
那么一般你必须去记录这个树结构,对吧,一般用链表来记录节点,节点的左右子节点的指针,这样就需要耗费比输入数组多几倍的空间,这样就无法in place了。
妙就妙在,你根据输入数组依次建立的这个完全二叉树,不用任何额外的空间去记录。这就得益于完全二叉树本身就是可以用数组存储的,这种数据结构是非常高效的。
对于数组中任一节点,你想知道它在完全二叉树中的parent,left,right,非常容易:
PARENT (i)
   return i/2

LEFT (i)
   return 2i

RIGHT (i)
   return 2i + 1
那么现在对于输入数组,已经抽象为完全二叉树了,那就要开始建堆,
先来学习一个重要的堆操作MAX-HEAPIFY 
MAX-HEAPIFY (A, i)
 1 l ← LEFT(i)
 2 r ← RIGHT(i)
 3 if l ≤ heap-size[A] and A[l] > A[i]
 4    then largest ← l
 5    else largest ← i
 6 if r ≤ heap-size[A] and A[r] > A[largest]
 7    then largest ← r
 8 if largest ≠ i
 9    then exchange A[i],A[largest]
10         MAX-HEAPIFY(A, largest)
这个函数就是对数组A中的第i个节点进行heapify操作
其实比较简单,1~7就是比较找出,i节点和左右子节点中,哪个最大
8~10,如果最大的不是i,那就把最大节点的和i节点交换,然后递归对从最大节点位置开始继续进行heapify
显而易见,对于n个节点的完全二叉树,高为lgn,对每个节点的heapify操作是常数级的,所以这个操作的时间复杂度就是lgn
那么有了heapify操作,建堆的算法很简单的,
BUILD-MAX-HEAP (A)
1  heap-size[A] ← length[A]
2  for i ← length[A]/2 downto 1
3       do MAX-HEAPIFY(A, i)

说白了,就是对i从length[A]/2到1的节点进行heapify操作。所以这个操作的时间复杂度上限咋一看应该是nlgn,其实比这个小的多,约等于2n,就是说建堆的时间复杂度是O(n),能够在线性时间内完成,这个是很高效的。
这个算法的依据是the elements in the subarray A[(n/2+1) ‥ n] are all leaves of the tree,所以我们只需要对所有非叶节点进行heapify操作就ok了
折腾半天堆建好了,怎么堆排序了,光从堆是得不到一个有序序列的。
HEAPSORT (A)
1 BUILD-MAX-HEAP(A)
2 for i ← length[A] downto 2
3    do exchange A[1],A[i]
4       heap-size[A] ← heap-size[A] - 1
5       MAX-HEAPIFY(A, 1)
原理很简单,从堆我们只能知道最大的那个,那么就把最大的那个去掉,然后heapify找到第二大的,依次下去。
实现也很巧妙,没有用到额外的存储空间,把堆顶放到堆尾,然后堆size-1
这个算法的时间复杂度也是nlgn

Python版

复制代码

  
  
1 def heapSort(input):
2 output = []
3 buildHeap(input)
4 print input
5 while input:
6 i = len(input) - 1
7 input[0],input[i] = input[i],input[0]
8 output.append(input.pop())
9 if input:
10 maxHeapify(input,0)
11 return output
12
13 def maxHeapify(input, i):
14 if i < 0:
15 return
16 left = 2 * i + 1 # because the i from 0, not 1
17 right = 2 * i + 2
18 largest = i
19 length = len(input)
20 if left < length:
21 if input[i] < input[left]: largest = left
22 if right < length:
23 if input[largest] < input[right]: largest = right
24 if largest != i:
25 input[i], input[largest] = input[largest], input[i]
26 maxHeapify(input,largest)
27
28 def buildHeap(input):
29 length = len(input)
30 if length < 2 : return
31 nonLeaf = length / 2
32 for i in range(nonLeaf, - 1 , - 1 ):
33 maxHeapify(input,i)
复制代码

堆排序介绍完了,有什么应用
我看到的在搜索引擎在生成查询结果时,需要对N个候选集进行排序并取前r个作为查询结果,这时r<<N
这时用堆排序比较经济,首先生成堆,然后排序的时候只要做r次heapify,然后后面的就可以不管了,省了很多时间。

书上介绍的典型应用是Priority queues
说了堆排序是个非常好的排序算法,但是在实际应用中了还是输给了快排,所以别人都用快排了。但是heap这个数据结构的应用是很广的。
比如这个典型应用Priority queues
queue就是先进先出,那么Priority queues有了priority,复杂一点了,priority大的先出,这个可以用于比如cpu的task,job调度。
这个priority queue用堆实现就很合适了,下面就是定义了需要的一些操作,
HEAP-MAXIMUM (A)
1 return A[1]

HEAP-EXTRACT-MAX (A)
1 if heap-size[A] < 1
2   then error "heap underflow"
3 max ← A[1]
4 A[1] ← A[heap-size[A]]
5 heap-size[A] ← heap-size[A] - 1
6 MAX-HEAPIFY(A, 1)
7 return max

HEAP-INCREASE-KEY (A, i, key)
1 if key < A[i]
2   then error "new key is smaller than current key"
3 A[i] ← key
4 while i > 1 and A[PARENT(i)] < A[i]
5     do exchange A[i],A[PARENT(i)]
6         i ← PARENT(i)

MAX-HEAP-INSERT (A, key)
1 heap-size[A] ← heap-size[A] + 1
2 A[heap-size[A]] ← -∞
3 HEAP-INCREASE-KEY(A, heap-size[A], key)


本文章摘自博客园,原文发布日期:2011-07-04

目录
相关文章
|
5月前
|
算法 Python
数据结构算法--4堆排序
堆排序过程概述:建立大根堆,将堆顶最大元素移出并替换为末尾元素,调整保持堆性质,重复此过程直至堆为空,实现排序。时间复杂度为O(nlogn)。Python中可用heapq模块进行堆操作。
|
6月前
|
机器学习/深度学习 人工智能 算法
数据结构与算法:堆排序和TOP-K问题
朋友们大家好,本节内容来到堆的应用:堆排序和topk问题
数据结构与算法:堆排序和TOP-K问题
|
6月前
|
存储 人工智能 算法
深入浅出堆排序: 高效算法背后的原理与性能
深入浅出堆排序: 高效算法背后的原理与性能
119 1
|
1月前
|
算法 搜索推荐
数据结构与算法学习十八:堆排序
这篇文章介绍了堆排序是一种通过构建堆数据结构来实现的高效排序算法,具有平均和最坏时间复杂度为O(nlogn)的特点。
73 0
数据结构与算法学习十八:堆排序
|
1月前
|
算法 搜索推荐
算法之堆排序
本文介绍了堆排序算法的原理和实现,通过构建最大堆或最小堆,利用堆的性质进行高效的排序,并提供了具体的编程实现细节和示例。
22 0
算法之堆排序
|
1月前
|
算法 Java Go
深入了解堆排序算法
深入了解堆排序算法
26 1
|
6月前
|
移动开发 算法 前端开发
前端算法之堆排序
前端算法之堆排序
42 1
|
5月前
|
搜索推荐 算法 Java
Java中的快速排序、归并排序和堆排序是常见的排序算法。
【6月更文挑战第21天】Java中的快速排序、归并排序和堆排序是常见的排序算法。快速排序采用分治,以基准元素划分数组并递归排序;归并排序同样分治,先分割再合并有序子数组;堆排序通过构建堆来排序,保持堆性质并交换堆顶元素。每种算法各有优劣:快排平均高效,最坏O(n²);归并稳定O(n log n)但需额外空间;堆排序O(n log n)且原地排序,但不稳定。
47 3
|
5月前
|
搜索推荐 算法
【C/排序算法】:堆排序和选择排序
【C/排序算法】:堆排序和选择排序
34 0
|
5月前
|
存储 算法 C语言
数据结构和算法——堆排序(选择排序、思路图解、代码、时间复杂度、堆排序及代码)
数据结构和算法——堆排序(选择排序、思路图解、代码、时间复杂度、堆排序及代码)
36 0
下一篇
无影云桌面