保险大数据的实践与实战

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 以保险业为例,一方面大数据为保险业带来了新的商业价值,既改变了管理者的经营理念和决策支持,也促进深入有效发掘客户需求。而另一方面,大数据也变成了双刃剑,互联网公司凭借更完整的数据链条,对传统保险业形成新的压力。

在实践中寻找大数据的平衡点


在2012年,中国互联网异军突起的杀进金融领域,尽管还未真正走出互联网金融的新路,但各金融行业如何与互联网更好地结合,为客户提供更加创新的产品和人性化的服务,已成为各金融机构越来越密集研究的课题。


与金融业息息相关的保险业,也开始感受到压力的出现。在很多互联网金融平台上,开始出现了越来越多的保险业务,还有一些垂直领域的应用上也开始集成基本的保险服务。这是保险业的面临的挑战。


不过周雄志则认为,保险业相对于互联网行业而言,还不算是个强需求,而是一个弱需求“目前在中国来讲,保险在老百姓的意识里,主动的保障意识还没那么强烈,所以这个弱需求决定了保险被互联网冲击还不明显”。不过,保险业显然已经意识到互联网的契机,大数据对业务的促进,以及电子化渠道的普及,也让保险业坚定了转型的决心。在挑战和机遇之间,这个平衡点也许就是大数据。


其实,保险业和大数据一直有千丝万缕的关系。


在大数据背景下,除了对数据的纵向分析之外,可以从横向来分析消费者的需求。客户的具体收入水平、文化程度、价值观念,也会影响其对保险的态度,通过对网络消费的数额、职业、学历等数据所进行的分析,也可以作为保险需求分析的重要部分。还可以通过搜集互联网用户的地域分布,搜索关键词、购物习惯、流览记录和兴趣爱好等一系列的数据,在保险产品消费中实现需求定向、偏好定向,真正做到精准化、个性化营销。


周雄志认为,保险的特点就是按照发生概率来做设计产品。一定是有相当的概率发生才会有需求有市场。不同的发生概率不同程度启发客户的需求,譬如高铁发生意外的概率是非常小的,而自驾发生意外的概率就大得多,客户对于自驾意外险的需求就比高铁意外险的需求强烈得多。在各种场景中能否抓住那些打动客户心弦的概率事件,能否通过大数据精准量化这个概率从而进行合理定价,就决定了能否设计出好的保险产品,这就是大数据给保险业带来的价值。春运抢票险就是一个很好的例子,春运期间大部分人都要买火车票回老家过年,虽然四通八达的高铁大大提高了运力,但是仍然有一定的概率买不到回家的火车票,这就是一种特别适合保险的场景,有一定相当的概率发生,但不是绝对发生的,客户有这样的心理预期,就有动力为这个概率买单。如果没有互联网大数据支持,这个保险产品就不会产生。


所以,任何一个行业都可能忽视大数据,但保险业不能。保险业基于大数法则、以精算为核心,自诞生之日起就非常重视数据,更何况是大数据。今天,大数据已经能够支持保险业在产品研发上进行创新,这在很多传统行业中仍然是不可想象的。


据了解,这些实践的经验,是泰康人寿在多年的数据研究中得出来的。就如周雄志所说,“泰康在大数据应用方面有所成绩,是因为泰康过去这十多年持续不断的在持续建设数据平台,完善数据应用。不断的把各种各样的信息进行整合处理,有这些积累才能在上面的去开展更深层次的数据建模、算法分析,但如果让有些公司自己从头开始去做,那么怎么把大量散落的数据整合连接起来都会是一个非常困难的事情。”看得出,大数据并不是能一蹴而就,对保险业的改造也只能源于实践。一直以来,泰康都是互联网时代的积极创新者,不断地加强数据的规模、活性、维度以及收集、分析、利用数据的能力,将之成为企业核心竞争力的关键。而对大数据的掌控和驾驭能力越强,市场竞争优势越明显。


实战驱动的保险业 大数据才有未来


当然,必须承认大数据并不是一个新鲜的概念。没有大数据的时候,数据也在产生应有的价值。周雄志认为,“对于保险业而言,并没有什么大数据和小数据的区分。实际上是我们在数据获取的深度和广度上面发生了变化,这样就使得我们在各种场景中,我们对数据的使用发生了变化。”


过去制约大数据在保险业发挥更大价值的首先是计算能力,随着云计算的普及,计算的能力得到极大发展,计算的成本越来越低,技术开始走向成熟,大数据真正驱动保险业变革的最后一公里,就是实战了。


但实战又是最难落地的一环。首先从人才的角度上,对数据科学家的认知还很有限,也缺乏真正在技术和业务两个层面融合的够好的大数据专家。周雄志说,“通常,数据科学家有的定义是专门做这种算法的,这是一种大家可能公认比较多的数据科学家。在我看来,我对数据科学家的要求会更严一些。因为你光懂算法是没用的,算法一定要作用在一个业务场景当中,能解决业务上的具体问题。如果不能解决业务问题,那这种算法就是自娱自乐的。”


这是一个很简单的道理,古人说纸上谈兵,这也是目前大数据在应用中的困扰。经历实战的大数据应用,才称得上是有价值的大数据。其实,国内很多大数据的创业公司都忽略了这一点,像百分点这样从学院派出身走出来,又能立足于业务创新的公司并不多。


其次,每个行业里的公司,其实处于不同的信息化水平。如果脱离了实战的意义,盲目的部署大数据,也没有实际的价值。比如,很多保险公司连传统的信息管理工作都还没有完善,数据孤岛问题都还没有解决,这时候需要的并不是大数据,而是对信息基础建设的强化,再来谈大数据价值。


再有,很多保险公司还没有建设移动App,即使有了移动App的保险公司,其移动App的功能只是集中在保单的简单查询,并没有将移动App定位为客户入口和主要渠道。还有一些保险公司内部数据都没有完成整合,数据还处于信息孤岛状态,对这些公司而言,大数据的应用是缺少实际基础的。


所以,总结来看,保险业有天生的大数据应用场景,保险业的未来业务布局应用将有大数据重要的位置。但是,大数据是需要实践和实战的信息化投入,不仅保险业要从自身认可数据价值,更需要真正理解行业实践的大数据公司,来一起设计一个数据化的保险业未来。

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
3月前
|
SQL 分布式计算 运维
如何对付一个耗时6h+的ODPS任务:慢节点优化实践
本文描述了大数据处理任务(特别是涉及大量JOIN操作的任务)中遇到的性能瓶颈问题及其优化过程。
|
2月前
|
机器学习/深度学习 算法 搜索推荐
从理论到实践,Python算法复杂度分析一站式教程,助你轻松驾驭大数据挑战!
【10月更文挑战第4天】在大数据时代,算法效率至关重要。本文从理论入手,介绍时间复杂度和空间复杂度两个核心概念,并通过冒泡排序和快速排序的Python实现详细分析其复杂度。冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1);快速排序平均时间复杂度为O(n log n),空间复杂度为O(log n)。文章还介绍了算法选择、分而治之及空间换时间等优化策略,帮助你在大数据挑战中游刃有余。
73 4
|
1月前
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
122 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
18天前
|
存储 消息中间件 分布式计算
Cisco WebEx 数据平台:统一 Trino、Pinot、Iceberg 及 Kyuubi,探索 Apache Doris 在 Cisco 的改造实践
Cisco WebEx 早期数据平台采用了多系统架构(包括 Trino、Pinot、Iceberg 、 Kyuubi 等),面临架构复杂、数据冗余存储、运维困难、资源利用率低、数据时效性差等问题。因此,引入 Apache Doris 替换了 Trino、Pinot 、 Iceberg 及 Kyuubi 技术栈,依赖于 Doris 的实时数据湖能力及高性能 OLAP 分析能力,统一数据湖仓及查询分析引擎,显著提升了查询性能及系统稳定性,同时实现资源成本降低 30%。
Cisco WebEx 数据平台:统一 Trino、Pinot、Iceberg 及 Kyuubi,探索 Apache Doris 在 Cisco 的改造实践
|
1月前
|
边缘计算 人工智能 搜索推荐
大数据与零售业:精准营销的实践
【10月更文挑战第31天】在信息化社会,大数据技术正成为推动零售业革新的重要驱动力。本文探讨了大数据在零售业中的应用,包括客户细分、个性化推荐、动态定价、营销自动化、预测性分析、忠诚度管理和社交网络洞察等方面,通过实际案例展示了大数据如何帮助商家洞悉消费者行为,优化决策,实现精准营销。同时,文章也讨论了大数据面临的挑战和未来展望。
|
1月前
|
并行计算 数据挖掘 大数据
Python数据分析实战:利用Pandas处理大数据集
Python数据分析实战:利用Pandas处理大数据集
|
2月前
|
消息中间件 存储 druid
大数据-156 Apache Druid 案例实战 Scala Kafka 订单统计
大数据-156 Apache Druid 案例实战 Scala Kafka 订单统计
46 3
|
2月前
|
Oracle 大数据 数据挖掘
企业内训|大数据产品运营实战培训-某电信运营商大数据产品研发中心
本课程是TsingtaoAI专为某电信运营商的大数据产品研发中心的产品支撑组设计,旨在深入探讨大数据在电信运营商领域的应用与运营策略。通过密集的培训,从数据的本质与价值出发,系统解析大数据工具和技术的最新进展,深入剖析行业内外的实践案例。课程涵盖如何理解和评估数据、如何有效运用大数据技术、以及如何在不同业务场景中实现数据的价值转化。
58 0
|
2月前
|
SQL 消息中间件 分布式计算
大数据-143 - ClickHouse 集群 SQL 超详细实践记录!(一)
大数据-143 - ClickHouse 集群 SQL 超详细实践记录!(一)
93 0
|
2月前
|
SQL 大数据
大数据-143 - ClickHouse 集群 SQL 超详细实践记录!(二)
大数据-143 - ClickHouse 集群 SQL 超详细实践记录!(二)
66 0