当 VR 遇上人工智能最火的“深度学习”,一种新的手势识别技术就诞生了

简介: 支持体感交互的VR设备能大大提高虚拟现实体验,不过像HTC Vive这种采用手柄交互的方式,并不能带来更接近现实的操作体验,笔者曾发表过一篇文章《目前主流动作捕捉技术深度解读,HTC Vive 等 VR 设备是如何实体感交互的?》谈到目前主流的交互技术,认为未来采用类似Leap Motion的手势识别技术才是王道。

支持体感交互的VR设备能大大提高虚拟现实体验,不过像HTC Vive这种采用手柄交互的方式,并不能带来更接近现实的操作体验,笔者曾发表过一篇文章《目前主流动作捕捉技术深度解读,HTC Vive 等 VR 设备是如何实体感交互的?》谈到目前主流的交互技术,认为未来采用类似Leap Motion的手势识别技术才是王道。

不过,这种技术并未发展成熟,准确率和精细度都有待提高,目前也有不少技术公司、机构等朝着这个方向努力,近日也有消息透露,普渡大学C Design Lab实验室研发出了一个名为“DeepHand”的新系统。


这个系统专为手势识别技术而打造,其特点是使用了卷积神经网络来模仿人类大脑,可进行深度学习,理解手部关节和运动的变化,提高识别的准确率和精细度。

1.gif


普渡大学的Karthik Ramani教授表示:“我们把它称为空间用户界面,因为你是在空间中与电脑进行交互,而不是通过触摸屏和键盘。如果用户想从虚拟桌面上捡起物品,驾驶虚拟汽车的话,很明显手部是关键。我们可以实时监测到你的手部位置,你的手指位置,以及你的手部和手指所有的动作。”


DeepHand采用类似Leap Motion的双摄像头深度感应相机来捕捉用户的手部,配备了专门的算法来解释手部运动,研究人员通过250万个手部姿势和形状组合来“训练”DeepHand。手指关节的位置被指定为“特征向量”,可以快速检索,然后,系统会从数据库中挑选一个最合适的数据来呈现给相机。


DeepHand可以识别出手部的关节角度,并通过数字组合来表达出这些角度的变化和形状组合。需要注意的是,这个系统需要“训练”,简单点说就是需要对各种手势动作进行录入,动作录入越多,识别的准确率则越高。

image.png


手势识别技术已越来越成熟,这其实是一种基于计算机视觉动作捕捉的技术,相比使用手柄交互其操作更接近真实体验,也无需像诺亦腾那种设备需要佩戴手套,使用起来更加自然。


不足的是,这种技术需要庞大的程序计算量,对硬件设备有一定配置要求,同时受外界环境影响大,比如环境光线昏暗、背景杂乱、有遮挡物等都无法很好的完成动作捕捉。


但这些问题迟早会被解决,比如光线昏暗无法捕捉的问题,使用红外夜视技术也许是个不错的解决方案。因此,在日后这种技术很可能会延伸到腿部甚至整个身体的识别以及交互。

相关文章
|
3天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
92 55
|
12天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
83 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
12天前
|
机器学习/深度学习 传感器 边缘计算
基于深度学习的图像识别技术在自动驾驶中的应用####
随着人工智能技术的飞速发展,深度学习已成为推动自动驾驶技术突破的关键力量之一。本文深入探讨了深度学习算法,特别是卷积神经网络(CNN)在图像识别领域的创新应用,以及这些技术如何被集成到自动驾驶汽车的视觉系统中,实现对复杂道路环境的实时感知与理解,从而提升驾驶的安全性和效率。通过分析当前技术的最前沿进展、面临的挑战及未来趋势,本文旨在为读者提供一个全面而深入的视角,理解深度学习如何塑造自动驾驶的未来。 ####
51 1
|
17天前
|
机器学习/深度学习 人工智能 自然语言处理
揭秘AI:深度学习的奥秘与实践
本文将深入浅出地探讨人工智能中的一个重要分支——深度学习。我们将从基础概念出发,逐步揭示深度学习的原理和工作机制。通过生动的比喻和实际代码示例,本文旨在帮助初学者理解并应用深度学习技术,开启AI之旅。
|
18天前
|
机器学习/深度学习 数据采集 传感器
基于深度学习的图像识别技术在自动驾驶中的应用研究####
本文旨在探讨深度学习技术,特别是卷积神经网络(CNN)在自动驾驶车辆图像识别领域的应用与进展。通过分析当前自动驾驶技术面临的挑战,详细介绍了深度学习模型如何提升环境感知能力,重点阐述了数据预处理、网络架构设计、训练策略及优化方法,并展望了未来发展趋势。 ####
62 6
|
16天前
|
机器学习/深度学习 算法框架/工具 网络架构
深度学习中的正则化技术及其对模型性能的影响
本文深入探讨了深度学习领域中正则化技术的重要性,通过分析L1、L2以及Dropout等常见正则化方法,揭示了它们如何帮助防止过拟合,提升模型的泛化能力。文章还讨论了正则化在不同类型的神经网络中的应用,并指出了选择合适正则化策略的关键因素。通过实例和代码片段,本文旨在为读者提供关于如何在实际问题中有效应用正则化技术的深刻见解。
|
19天前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解人工智能中的深度学习技术及其最新进展
深入理解人工智能中的深度学习技术及其最新进展
|
12天前
|
机器学习/深度学习 存储 人工智能
探索深度学习的奥秘:从理论到实践的技术感悟
本文深入探讨了深度学习技术的核心原理、发展历程以及在实际应用中的体验与挑战。不同于常规摘要,本文旨在通过作者个人的技术实践经历,为读者揭示深度学习领域的复杂性与魅力,同时提供一些实用的技术见解和解决策略。
28 0
|
16天前
|
机器学习/深度学习 传感器 自动驾驶
基于深度学习的图像识别技术及其在自动驾驶中的应用####
本文深入探讨了深度学习驱动下的图像识别技术,特别是在自动驾驶领域的革新应用。不同于传统摘要的概述方式,本节将直接以“深度学习”与“图像识别”的技术融合为起点,简述其在提升自动驾驶系统环境感知能力方面的核心作用,随后快速过渡到自动驾驶的具体应用场景,强调这一技术组合如何成为推动自动驾驶从实验室走向市场的关键力量。 ####
38 0
|
19天前
|
机器学习/深度学习 人工智能 自然语言处理
深入探讨人工智能中的深度学习技术##
在本文中,我们将深入探讨深度学习技术的原理、应用以及未来的发展趋势。通过分析神经网络的基本结构和工作原理,揭示深度学习如何在图像识别、自然语言处理等领域取得突破性进展。同时,我们还将讨论当前面临的挑战和未来的研究方向,为读者提供全面的技术洞察。 ##