平方预测误差(Squared prediction error,SPE)和霍特林统计量(Hotelling’s T2)原理

简介: 平方预测误差(Squared prediction error,SPE)和霍特林统计量(Hotelling’s T2)原理

读Paper读的头炸(原因:太菜),坚持每天简单通俗总结一下!

image.png

故障检测是多变量过程监控的第一步。


通常,SPE(或Q-统计量)和霍特林的T2指数分别用于监测RS和PCS的正常变异性。


应注意的是,PCA或PLS建模不要求数据为高斯分布。高斯假设仅用于推导故障检测指数的适当控制限值。此外,在推导控制限值时,不需要样本的时间独立性,因为仅指定I类错误来控制假警报率。当涉及II类错误时,监测测量的时间独立性是必要的,即未检测到的故障率。


当测量值假设为高斯分布时,通常适合使用马氏距离来定义故障检测的正常区域,例如,在主分量子空间中。然而,由于过程数据通常高度相关,这使得剩余分量的方差接近于零,因此在RS中使用马氏距离将是病态的。因此,Q统计量或SPE使用欧几里德距离来定义故障检测的正常区域。由于这两个指标的互补性,还提出了用于故障检测和诊断的组合指标。


以下,我总结了这些故障检测指标。


平方预测误差(Squared prediction error,SPE)

SPE指数测量样本向量在剩余子空间上的投影,

image.png

如果出现以下情况,则该过程视为正常

image.png

image.png

霍特林统计量(Hotelling’s T2)

image.png

image.png

image.png

image.png

image.png

image.png

image.png

综合指标(Combined Indices)

在实践中,有时最好使用一个指标而不是两个指标来监控流程。

有的论文中建议采用组合统计,但不给出控制限。

image.png

image.png

其中,

image.png

image.png

image.png

其中系数

image.png

image.png

image.png

image.png




目录
打赏
0
0
0
0
26
分享
相关文章
Python 金融量化 均线系统交易策略专题(简单移动平均,加权移动平均,指数加权移动平均,异同移动平均MACD等解读与绘图)
Python 金融量化 均线系统交易策略专题(简单移动平均,加权移动平均,指数加权移动平均,异同移动平均MACD等解读与绘图)
1223 0
Python 金融量化 均线系统交易策略专题(简单移动平均,加权移动平均,指数加权移动平均,异同移动平均MACD等解读与绘图)
分位数回归+共形预测:Conformalized Quantile Regression实现更可靠的预测区间
预测不确定性量化在数据驱动决策中至关重要,分位数回归(QR)虽能生成自适应预测区间,但缺乏严格覆盖保证;共形预测(CP)则提供覆盖保证但缺乏强自适应性。Conformalized Quantile Regression (CQR)融合两者优势,通过校准分位数回归模型,生成既适应数据特性又具备统计保证的预测区间。本文深入探讨CQR理论、实现与应用,展示其在医疗、金融等领域提升预测可靠性的潜力,为高风险决策提供更精确和可信的支持。
65 0
分位数回归+共形预测:Conformalized Quantile Regression实现更可靠的预测区间
|
10月前
技术心得记录:可决系数R^2和方差膨胀因子VIF
技术心得记录:可决系数R^2和方差膨胀因子VIF
153 0
R语言BUGS序列蒙特卡罗SMC、马尔可夫转换随机波动率SV模型、粒子滤波、Metropolis Hasting采样时间序列分析
R语言BUGS序列蒙特卡罗SMC、马尔可夫转换随机波动率SV模型、粒子滤波、Metropolis Hasting采样时间序列分析
Python用KNN(K-近邻)回归、分类、异常值检测预测房价、最优K值选取、误差评估可视化
Python用KNN(K-近邻)回归、分类、异常值检测预测房价、最优K值选取、误差评估可视化
R语言随机波动率(SV)模型、MCMC的Metropolis-Hastings算法金融应用:预测标准普尔SP500指数
R语言随机波动率(SV)模型、MCMC的Metropolis-Hastings算法金融应用:预测标准普尔SP500指数
R平方/相关性取决于预测变量的方差
R平方/相关性取决于预测变量的方差
|
11月前
|
Python随机波动率(SV)模型对标普500指数时间序列波动性预测
Python随机波动率(SV)模型对标普500指数时间序列波动性预测
|
11月前
极值分析:分块极大值BLOCK-MAXIMA、阈值超额法、广义帕累托分布GPD拟合降雨数据时间序列
极值分析:分块极大值BLOCK-MAXIMA、阈值超额法、广义帕累托分布GPD拟合降雨数据时间序列
极值分析:分块极大值BLOCK-MAXIMA、阈值超额法、广义帕累托分布GPD拟合降雨数据时间序列