R语言随机波动率(SV)模型、MCMC的Metropolis-Hastings算法金融应用:预测标准普尔SP500指数

简介: R语言随机波动率(SV)模型、MCMC的Metropolis-Hastings算法金融应用:预测标准普尔SP500指数

在这个例子中,我们考虑随机波动率模型 SV0 的应用,例如在金融领域。

统计模型

随机波动率模型定义如下

并为

其中 yt 是因变量,xt 是 yt 的未观察到的对数波动率。N(m,σ2) 表示均值 m 和方差 σ2 的正态分布。

α、β 和 σ 是需要估计的未知参数。

BUGS语言统计模型

文件内容 'sv.bug'

moelfle = 'sv.bug' # BUGS模型文件名
cat(readLies(moelfle ), sep = "\\n")
# 随机波动率模型SV_0
# 用于随机波动率模型
var y\[t\_max\], x\[t\_max\], prec\_y\[t\_max\]
model
{
  alha ~ dnorm(0,10000)
  logteta ~ dnorm(0,.1)
  bea <- ilogit(loit_ta)
  lg_sima ~ dnorm(0, 1)
  sia <- exp(log_sigma)
  x\[1\] ~ dnorm(0, 1/sma^2)
  pr_y\[1\] <- exp(-x\[1\])
  y\[1\] ~ dnorm(0, prec_y\[1\])
  for (t in 2:t_max)
  {
    x\[t\] ~ dnorm(aa + eta*(t-1\]-alha, 1/ia^2)
    pr_y\[t\] <- exp(-xt
t)
    y\[t\] ~ dnorm(0, prec_yt
t)
  }

设置

设置随机数生成器种子以实现可重复性

set.seed(0)

加载模型并加载或模拟数据

sample_data = TRUE # 模拟数据或SP500数据
t_max = 100
if (!sampe_ata) {
# 加载数据  tab = read.csv('SP500.csv')
  y = diff(log(rev(tab$ose)))
  SP5ate_str = revtab$te\[-1\])
  ind = 1:t_max
  y = yind
ind
  SP500\_dae\_r = SP0dae_trind
ind
  SP500\_e\_num = as.Date(SP500_dtetr)

模型参数

if (!smle_dta) {
  dat = list(t_ma=ax, y=y)
} else {
  sigrue = .4; alpa_rue = 0; bettrue=.99;
  dat = list(t\_mx=\_mx, sigm_tue=simarue,
              alpatrue=alhatrue, bet\_tue=e\_true)
}

如果模拟数据,编译BUGS模型和样本数据

data = mdl$da()

绘制数据

对数收益率

Biips粒子边际Metropolis-Hastings

我们现在运行Biips粒子边际Metropolis-Hastings (Particle Marginal Metropolis-Hastings),以获得参数 α、β 和 σ 以及变量 x 的后验 MCMC 样本。

PMMH的参数

n_brn = 5000 #  预烧/适应迭代的数量
n_ir = 10000 #预烧后的迭代次数
thn = 5 #对MCMC输出进行稀释
n_art = 50 # 用于SMC的nb个粒子
para\_nmes = c('apha', 'loit\_bta', 'logsgma') # 用MCMC更新的变量名称(其他变量用SMC更新)。
latetnams = c('x') # 用SMC更新的、需要监测的变量名称

初始化PMMH

运行 PMMH

update(b\_pmh, n\_bun, _rt) #预烧和拟合迭代


samples(oj\_mh, ter, n\_art, thin=hn) # 采样

汇总统计

summary(otmmh, prob=c(.025, .975))

计算核密度估计

density(out_mh)

参数的后验均值和置信区间

for (k in 1:length(pram_names)) {
  suparam = su\_pmm\[pam_as\[k
\[pam\_as\[k\]\]
  cat(param$q)
}

参数的MCMC样本的踪迹

if (amldata)
  para\_tue = c(lp\_tue, log(dt$bea_rue/(-dta$eatru)), log(smtue))
)
for (k in 1:length(param_aes)) {
  smps_pm = tmmh\[paranesk
\[paranesk\]
  plot(samlespram

1,

1,

PMMH:跟踪样本参数



点击标题查阅往期相关内容


使用R语言随机波动模型SV处理时间序列中的随机波动


左右滑动查看更多

01

02

03

04




参数后验的直方图和 KDE 估计

for (k in 1:length(paramns)) {
  samps\_aram = out\_mmh\[pramnaes\[k
\[pramnaes\[k\]\]
  hist(sple_param)
  if (sample_data)
    points(parm_true)
}

PMMH:直方图后验参数

for (k in 1:length(parm) {
  kd\_pram =kde\_mm\[paramames\[k
\[paramames\[k\]\]
  plot(kd_arm, col'blue
  if (smpldata)
    points(ar_truek
k)
}

PMMH:KDE 估计后验参数

x 的后均值和分位数

x\_m\_mean = x$mean
x\_p\_quant =x$quant
plot(xx, yy)
polygon(xx, yy)
lines(1:t\_max, x\_p_man)
if (ame_at) {
  lines(1:t\_ax, x\_true)
} else
  legend(
         bt='n)

PMMH:后验均值和分位数

x 的 MCMC 样本的踪迹

par(mfrow=c(2,2))
for (k in 1:length) {
  tk = ie_inex\[k\]
      
  if (sample_data)
    points(0, dtax_t
}
if (sml_aa) {
  plot(0
  legend('center')
}

PMMH:跟踪样本 x

x 后验的直方图和核密度估计

par(mfow=c(2,2))
for (k in 1:length(tie_dex)) {
  tk = tmnexk
k
  hist(ot_m$xtk,
tk,
       main=aste(t=', t, se='')
  if (sample_data)
    points(ata$x_ret
t, 
}
if (saml_dta) {
  plot(0, type='n', bty='n', x
  legend('center
         bty='n')
}

PMMH:后_边际_直方图

par(mfrow=c(2,2))
for (k in 1:length(idx)) {
  tk =m_dxk
k
  plot(kmmk\]\]  if (alata)
    point(dat_rk
k, 0)
}
if (aldt) {
  plot(0, type='n', bty='n', x, pt.bg=c(4,NA)')
}


相关文章
|
15天前
|
存储 负载均衡 算法
基于 C++ 语言的迪杰斯特拉算法在局域网计算机管理中的应用剖析
在局域网计算机管理中,迪杰斯特拉算法用于优化网络路径、分配资源和定位故障节点,确保高效稳定的网络环境。该算法通过计算最短路径,提升数据传输速率与稳定性,实现负载均衡并快速排除故障。C++代码示例展示了其在网络模拟中的应用,为企业信息化建设提供有力支持。
42 15
|
22天前
|
运维 监控 算法
监控局域网其他电脑:Go 语言迪杰斯特拉算法的高效应用
在信息化时代,监控局域网成为网络管理与安全防护的关键需求。本文探讨了迪杰斯特拉(Dijkstra)算法在监控局域网中的应用,通过计算最短路径优化数据传输和故障检测。文中提供了使用Go语言实现的代码例程,展示了如何高效地进行网络监控,确保局域网的稳定运行和数据安全。迪杰斯特拉算法能减少传输延迟和带宽消耗,及时发现并处理网络故障,适用于复杂网络环境下的管理和维护。
|
9天前
|
人工智能 自然语言处理 供应链
从第十批算法备案通过名单中分析算法的属地占比、行业及应用情况
2025年3月12日,国家网信办公布第十批深度合成算法通过名单,共395款。主要分布在广东、北京、上海、浙江等地,占比超80%,涵盖智能对话、图像生成、文本生成等多行业。典型应用包括医疗、教育、金融等领域,如觅健医疗内容生成算法、匠邦AI智能生成合成算法等。服务角色以面向用户为主,技术趋势为多模态融合与垂直领域专业化。
|
8天前
|
JavaScript 前端开发 算法
JavaScript 中通过Array.sort() 实现多字段排序、排序稳定性、随机排序洗牌算法、优化排序性能,JS中排序算法的使用详解(附实际应用代码)
Array.sort() 是一个功能强大的方法,通过自定义的比较函数,可以处理各种复杂的排序逻辑。无论是简单的数字排序,还是多字段、嵌套对象、分组排序等高级应用,Array.sort() 都能胜任。同时,通过性能优化技巧(如映射排序)和结合其他数组方法(如 reduce),Array.sort() 可以用来实现高效的数据处理逻辑。 只有锻炼思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
|
17天前
|
存储 人工智能 算法
通过Milvus内置Sparse-BM25算法进行全文检索并将混合检索应用于RAG系统
阿里云向量检索服务Milvus 2.5版本在全文检索、关键词匹配以及混合检索(Hybrid Search)方面实现了显著的增强,在多模态检索、RAG等多场景中检索结果能够兼顾召回率与精确性。本文将详细介绍如何利用 Milvus 2.5 版本实现这些功能,并阐述其在RAG 应用的 Retrieve 阶段的最佳实践。
通过Milvus内置Sparse-BM25算法进行全文检索并将混合检索应用于RAG系统
|
23天前
|
存储 缓存 监控
企业监控软件中 Go 语言哈希表算法的应用研究与分析
在数字化时代,企业监控软件对企业的稳定运营至关重要。哈希表(散列表)作为高效的数据结构,广泛应用于企业监控中,如设备状态管理、数据分类和缓存机制。Go 语言中的 map 实现了哈希表,能快速处理海量监控数据,确保实时准确反映设备状态,提升系统性能,助力企业实现智能化管理。
31 3
|
11天前
|
人工智能 自然语言处理 算法
从第九批深度合成备案通过公示名单分析算法备案属地、行业及应用领域占比
2024年12月20日,中央网信办公布第九批深度合成算法名单。分析显示,教育、智能对话、医疗健康和图像生成为核心应用领域。文本生成占比最高(57.56%),涵盖智能客服、法律咨询等;图像/视频生成次之(27.32%),应用于广告设计、影视制作等。北京、广东、浙江等地技术集中度高,多模态融合成未来重点。垂直行业如医疗、教育、金融加速引入AI,提升效率与用户体验。
|
16天前
|
数据采集 机器学习/深度学习 数据可视化
探索大数据分析的无限可能:R语言的应用与实践
探索大数据分析的无限可能:R语言的应用与实践
56 9
|
6月前
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
5月前
|
数据挖掘 C语言 C++
R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。
【10月更文挑战第21天】时间序列分析是一种重要的数据分析方法,广泛应用于经济学、金融学、气象学、生态学等领域。R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。本文将介绍使用R语言进行时间序列分析的基本概念、方法和实例,帮助读者掌握R语言在时间序列分析中的应用。
98 3