R语言随机波动率(SV)模型、MCMC的Metropolis-Hastings算法金融应用:预测标准普尔SP500指数

简介: R语言随机波动率(SV)模型、MCMC的Metropolis-Hastings算法金融应用:预测标准普尔SP500指数

在这个例子中,我们考虑随机波动率模型 SV0 的应用,例如在金融领域。

统计模型

随机波动率模型定义如下

并为

其中 yt 是因变量,xt 是 yt 的未观察到的对数波动率。N(m,σ2) 表示均值 m 和方差 σ2 的正态分布。

α、β 和 σ 是需要估计的未知参数。

BUGS语言统计模型

文件内容 'sv.bug'

moelfle = 'sv.bug' # BUGS模型文件名
cat(readLies(moelfle ), sep = "\\n")
# 随机波动率模型SV_0
# 用于随机波动率模型
var y\[t\_max\], x\[t\_max\], prec\_y\[t\_max\]
model
{
  alha ~ dnorm(0,10000)
  logteta ~ dnorm(0,.1)
  bea <- ilogit(loit_ta)
  lg_sima ~ dnorm(0, 1)
  sia <- exp(log_sigma)
  x\[1\] ~ dnorm(0, 1/sma^2)
  pr_y\[1\] <- exp(-x\[1\])
  y\[1\] ~ dnorm(0, prec_y\[1\])
  for (t in 2:t_max)
  {
    x\[t\] ~ dnorm(aa + eta*(t-1\]-alha, 1/ia^2)
    pr_y\[t\] <- exp(-xt
t)
    y\[t\] ~ dnorm(0, prec_yt
t)
  }

设置

设置随机数生成器种子以实现可重复性

set.seed(0)

加载模型并加载或模拟数据

sample_data = TRUE # 模拟数据或SP500数据
t_max = 100
if (!sampe_ata) {
# 加载数据  tab = read.csv('SP500.csv')
  y = diff(log(rev(tab$ose)))
  SP5ate_str = revtab$te\[-1\])
  ind = 1:t_max
  y = yind
ind
  SP500\_dae\_r = SP0dae_trind
ind
  SP500\_e\_num = as.Date(SP500_dtetr)

模型参数

if (!smle_dta) {
  dat = list(t_ma=ax, y=y)
} else {
  sigrue = .4; alpa_rue = 0; bettrue=.99;
  dat = list(t\_mx=\_mx, sigm_tue=simarue,
              alpatrue=alhatrue, bet\_tue=e\_true)
}

如果模拟数据,编译BUGS模型和样本数据

data = mdl$da()

绘制数据

对数收益率

Biips粒子边际Metropolis-Hastings

我们现在运行Biips粒子边际Metropolis-Hastings (Particle Marginal Metropolis-Hastings),以获得参数 α、β 和 σ 以及变量 x 的后验 MCMC 样本。

PMMH的参数

n_brn = 5000 #  预烧/适应迭代的数量
n_ir = 10000 #预烧后的迭代次数
thn = 5 #对MCMC输出进行稀释
n_art = 50 # 用于SMC的nb个粒子
para\_nmes = c('apha', 'loit\_bta', 'logsgma') # 用MCMC更新的变量名称(其他变量用SMC更新)。
latetnams = c('x') # 用SMC更新的、需要监测的变量名称

初始化PMMH

运行 PMMH

update(b\_pmh, n\_bun, _rt) #预烧和拟合迭代


samples(oj\_mh, ter, n\_art, thin=hn) # 采样

汇总统计

summary(otmmh, prob=c(.025, .975))

计算核密度估计

density(out_mh)

参数的后验均值和置信区间

for (k in 1:length(pram_names)) {
  suparam = su\_pmm\[pam_as\[k
\[pam\_as\[k\]\]
  cat(param$q)
}

参数的MCMC样本的踪迹

if (amldata)
  para\_tue = c(lp\_tue, log(dt$bea_rue/(-dta$eatru)), log(smtue))
)
for (k in 1:length(param_aes)) {
  smps_pm = tmmh\[paranesk
\[paranesk\]
  plot(samlespram

1,

1,

PMMH:跟踪样本参数



点击标题查阅往期相关内容


使用R语言随机波动模型SV处理时间序列中的随机波动


左右滑动查看更多

01

02

03

04




参数后验的直方图和 KDE 估计

for (k in 1:length(paramns)) {
  samps\_aram = out\_mmh\[pramnaes\[k
\[pramnaes\[k\]\]
  hist(sple_param)
  if (sample_data)
    points(parm_true)
}

PMMH:直方图后验参数

for (k in 1:length(parm) {
  kd\_pram =kde\_mm\[paramames\[k
\[paramames\[k\]\]
  plot(kd_arm, col'blue
  if (smpldata)
    points(ar_truek
k)
}

PMMH:KDE 估计后验参数

x 的后均值和分位数

x\_m\_mean = x$mean
x\_p\_quant =x$quant
plot(xx, yy)
polygon(xx, yy)
lines(1:t\_max, x\_p_man)
if (ame_at) {
  lines(1:t\_ax, x\_true)
} else
  legend(
         bt='n)

PMMH:后验均值和分位数

x 的 MCMC 样本的踪迹

par(mfrow=c(2,2))
for (k in 1:length) {
  tk = ie_inex\[k\]
      
  if (sample_data)
    points(0, dtax_t
}
if (sml_aa) {
  plot(0
  legend('center')
}

PMMH:跟踪样本 x

x 后验的直方图和核密度估计

par(mfow=c(2,2))
for (k in 1:length(tie_dex)) {
  tk = tmnexk
k
  hist(ot_m$xtk,
tk,
       main=aste(t=', t, se='')
  if (sample_data)
    points(ata$x_ret
t, 
}
if (saml_dta) {
  plot(0, type='n', bty='n', x
  legend('center
         bty='n')
}

PMMH:后_边际_直方图

par(mfrow=c(2,2))
for (k in 1:length(idx)) {
  tk =m_dxk
k
  plot(kmmk\]\]  if (alata)
    point(dat_rk
k, 0)
}
if (aldt) {
  plot(0, type='n', bty='n', x, pt.bg=c(4,NA)')
}


相关文章
|
1天前
|
机器学习/深度学习 数据采集 监控
算法金 | 选择最佳机器学习模型的 10 步指南
许多刚入门的学习者也面临着相似的挑战,特别是在项目启动初期的方向确定和结构规划上。本文意在提供一份全面指南,助你以正确的方法开展项目。 遵循本文提供的每一步至关重要(虽有少数例外)。就像不做饭或点餐就无法享用美食一样,不亲自动手构建模型,就无法实现模型部署。
22 7
算法金 | 选择最佳机器学习模型的 10 步指南
|
1天前
|
机器学习/深度学习 算法 C语言
详细介绍递归算法在 C 语言中的应用,包括递归的基本概念、特点、实现方法以及实际应用案例
【6月更文挑战第15天】递归算法在C语言中是强大力量的体现,通过函数调用自身解决复杂问题。递归涉及基本概念如自调用、终止条件及栈空间管理。在C中实现递归需定义递归函数,分解问题并设定停止条件。阶乘和斐波那契数列是经典应用示例,展示了递归的优雅与效率。然而,递归可能导致栈溢出,需注意优化。学习递归深化了对“分而治之”策略的理解。**
11 7
|
2天前
|
机器学习/深度学习 存储 算法
【机器学习】深入探索机器学习:线性回归算法的原理与应用
【机器学习】深入探索机器学习:线性回归算法的原理与应用
|
3天前
|
机器学习/深度学习 存储 人工智能
算法金 | 一个强大的算法模型,GP !!
高斯过程是一种非参数机器学习方法,利用高斯分布描述数据,并通过核函数衡量相似性。它在小样本和不确定性估计上有优势,常用于回归、分类和优化。高斯过程基于函数分布,通过核函数(如线性、RBF、多项式)捕捉数据关系。与传统方法相比,它在处理不确定性和非线性问题时更具灵活性。虽然计算复杂度高、内存需求大,但通过稀疏高斯过程等方法可改善。高斯过程还可扩展到非平稳和多任务场景。本文通过代码示例展示了高斯过程在战斗胜率预测中的应用。
28 11
算法金 | 一个强大的算法模型,GP !!
|
3天前
|
机器学习/深度学习 人工智能 自然语言处理
让非算法同学也能了解 ChatGPT 等相关大模型
让非算法同学也能了解 ChatGPT 等相关大模型
|
4天前
|
数据采集 机器学习/深度学习 人工智能
算法金 | 一个强大的算法模型,多项式回归!!
```markdown # 多项式回归简述 - 多项式回归是线性回归扩展,用于处理非线性关系。 - 通过添加高次项来拟合复杂模式,但可能引发过拟合。 - 示例中展示了如何用Python创建模拟数据,使用`PolynomialFeatures`生成多项式特征,训练线性回归模型并可视化结果。 - 优点:灵活捕捉非线性关系,易于理解。 - 缺点:易过拟合,计算复杂度高。 - 相关概念:正则化(岭回归、Lasso回归)及其他非线性模型(如支持向量回归)。 - 注意事项:选择合适阶数,避免过拟合,重视数据预处理和模型评估。 ```
15 0
算法金 | 一个强大的算法模型,多项式回归!!
|
4天前
|
机器学习/深度学习 算法 前端开发
决策树与随机森林算法在分类问题中的应用
本文探讨了决策树和随机森林两种监督学习算法,它们在分类任务中表现出强大的解释性和预测能力。决策树通过特征测试进行分类,构建涉及特征选择、树生成和剪枝。随机森林是集成学习方法,通过构建多棵决策树并汇总预测结果,防止过拟合。文中提供了Python代码示例,展示如何使用sklearn构建和应用这些模型,并讨论了参数调优和模型评估方法,如交叉验证和混淆矩阵。最后,强调了在实际问题中灵活选择和调整模型参数的重要性。
19 4
|
6天前
|
存储 算法 数据可视化
Dijkstra算法在《庆余年》中的应用:范闲的皇宫之旅
Dijkstra算法在《庆余年》中的应用:范闲的皇宫之旅
|
6天前
|
机器学习/深度学习 算法 大数据
【机器学习】朴素贝叶斯算法及其应用探索
在机器学习的广阔领域中,朴素贝叶斯分类器以其实现简单、计算高效和解释性强等特点,成为了一颗璀璨的明星。尽管名字中带有“朴素”二字,它在文本分类、垃圾邮件过滤、情感分析等多个领域展现出了不凡的效果。本文将深入浅出地介绍朴素贝叶斯的基本原理、数学推导、优缺点以及实际应用案例,旨在为读者构建一个全面而深刻的理解框架。
11 1
|
6天前
|
算法 数据挖掘 定位技术
算法必备数学基础:图论方法由浅入深实践与应用
算法必备数学基础:图论方法由浅入深实践与应用

热门文章

最新文章