R语言随机波动率(SV)模型、MCMC的Metropolis-Hastings算法金融应用:预测标准普尔SP500指数

简介: R语言随机波动率(SV)模型、MCMC的Metropolis-Hastings算法金融应用:预测标准普尔SP500指数

在这个例子中,我们考虑随机波动率模型 SV0 的应用,例如在金融领域。

统计模型

随机波动率模型定义如下

并为

其中 yt 是因变量,xt 是 yt 的未观察到的对数波动率。N(m,σ2) 表示均值 m 和方差 σ2 的正态分布。

α、β 和 σ 是需要估计的未知参数。

BUGS语言统计模型

文件内容 'sv.bug'

moelfle = 'sv.bug' # BUGS模型文件名
cat(readLies(moelfle ), sep = "\\n")
# 随机波动率模型SV_0
# 用于随机波动率模型
var y\[t\_max\], x\[t\_max\], prec\_y\[t\_max\]
model
{
  alha ~ dnorm(0,10000)
  logteta ~ dnorm(0,.1)
  bea <- ilogit(loit_ta)
  lg_sima ~ dnorm(0, 1)
  sia <- exp(log_sigma)
  x\[1\] ~ dnorm(0, 1/sma^2)
  pr_y\[1\] <- exp(-x\[1\])
  y\[1\] ~ dnorm(0, prec_y\[1\])
  for (t in 2:t_max)
  {
    x\[t\] ~ dnorm(aa + eta*(t-1\]-alha, 1/ia^2)
    pr_y\[t\] <- exp(-xt
t)
    y\[t\] ~ dnorm(0, prec_yt
t)
  }

设置

设置随机数生成器种子以实现可重复性

set.seed(0)

加载模型并加载或模拟数据

sample_data = TRUE # 模拟数据或SP500数据
t_max = 100
if (!sampe_ata) {
# 加载数据  tab = read.csv('SP500.csv')
  y = diff(log(rev(tab$ose)))
  SP5ate_str = revtab$te\[-1\])
  ind = 1:t_max
  y = yind
ind
  SP500\_dae\_r = SP0dae_trind
ind
  SP500\_e\_num = as.Date(SP500_dtetr)

模型参数

if (!smle_dta) {
  dat = list(t_ma=ax, y=y)
} else {
  sigrue = .4; alpa_rue = 0; bettrue=.99;
  dat = list(t\_mx=\_mx, sigm_tue=simarue,
              alpatrue=alhatrue, bet\_tue=e\_true)
}

如果模拟数据,编译BUGS模型和样本数据

data = mdl$da()

绘制数据

对数收益率

Biips粒子边际Metropolis-Hastings

我们现在运行Biips粒子边际Metropolis-Hastings (Particle Marginal Metropolis-Hastings),以获得参数 α、β 和 σ 以及变量 x 的后验 MCMC 样本。

PMMH的参数

n_brn = 5000 #  预烧/适应迭代的数量
n_ir = 10000 #预烧后的迭代次数
thn = 5 #对MCMC输出进行稀释
n_art = 50 # 用于SMC的nb个粒子
para\_nmes = c('apha', 'loit\_bta', 'logsgma') # 用MCMC更新的变量名称(其他变量用SMC更新)。
latetnams = c('x') # 用SMC更新的、需要监测的变量名称

初始化PMMH

运行 PMMH

update(b\_pmh, n\_bun, _rt) #预烧和拟合迭代


samples(oj\_mh, ter, n\_art, thin=hn) # 采样

汇总统计

summary(otmmh, prob=c(.025, .975))

计算核密度估计

density(out_mh)

参数的后验均值和置信区间

for (k in 1:length(pram_names)) {
  suparam = su\_pmm\[pam_as\[k
\[pam\_as\[k\]\]
  cat(param$q)
}

参数的MCMC样本的踪迹

if (amldata)
  para\_tue = c(lp\_tue, log(dt$bea_rue/(-dta$eatru)), log(smtue))
)
for (k in 1:length(param_aes)) {
  smps_pm = tmmh\[paranesk
\[paranesk\]
  plot(samlespram

1,

1,

PMMH:跟踪样本参数



点击标题查阅往期相关内容


使用R语言随机波动模型SV处理时间序列中的随机波动


左右滑动查看更多

01

02

03

04




参数后验的直方图和 KDE 估计

for (k in 1:length(paramns)) {
  samps\_aram = out\_mmh\[pramnaes\[k
\[pramnaes\[k\]\]
  hist(sple_param)
  if (sample_data)
    points(parm_true)
}

PMMH:直方图后验参数

for (k in 1:length(parm) {
  kd\_pram =kde\_mm\[paramames\[k
\[paramames\[k\]\]
  plot(kd_arm, col'blue
  if (smpldata)
    points(ar_truek
k)
}

PMMH:KDE 估计后验参数

x 的后均值和分位数

x\_m\_mean = x$mean
x\_p\_quant =x$quant
plot(xx, yy)
polygon(xx, yy)
lines(1:t\_max, x\_p_man)
if (ame_at) {
  lines(1:t\_ax, x\_true)
} else
  legend(
         bt='n)

PMMH:后验均值和分位数

x 的 MCMC 样本的踪迹

par(mfrow=c(2,2))
for (k in 1:length) {
  tk = ie_inex\[k\]
      
  if (sample_data)
    points(0, dtax_t
}
if (sml_aa) {
  plot(0
  legend('center')
}

PMMH:跟踪样本 x

x 后验的直方图和核密度估计

par(mfow=c(2,2))
for (k in 1:length(tie_dex)) {
  tk = tmnexk
k
  hist(ot_m$xtk,
tk,
       main=aste(t=', t, se='')
  if (sample_data)
    points(ata$x_ret
t, 
}
if (saml_dta) {
  plot(0, type='n', bty='n', x
  legend('center
         bty='n')
}

PMMH:后_边际_直方图

par(mfrow=c(2,2))
for (k in 1:length(idx)) {
  tk =m_dxk
k
  plot(kmmk\]\]  if (alata)
    point(dat_rk
k, 0)
}
if (aldt) {
  plot(0, type='n', bty='n', x, pt.bg=c(4,NA)')
}


相关文章
|
2天前
|
机器学习/深度学习 人工智能 算法
青否数字人声音克隆算法升级,16个超真实直播声音模型免费送!
青否数字人的声音克隆算法全面升级,能够完美克隆真人的音调、语速、情感和呼吸。提供16种超真实的直播声音模型,支持3大AI直播类型和6大核心AIGC技术,60秒快速开播,助力商家轻松赚钱。AI讲品、互动和售卖功能强大,支持多平台直播,确保每场直播话术不重复,智能互动和真实感十足。新手小白也能轻松上手,有效规避违规风险。
|
3天前
|
分布式计算 Java 开发工具
阿里云MaxCompute-XGBoost on Spark 极限梯度提升算法的分布式训练与模型持久化oss的实现与代码浅析
本文介绍了XGBoost在MaxCompute+OSS架构下模型持久化遇到的问题及其解决方案。首先简要介绍了XGBoost的特点和应用场景,随后详细描述了客户在将XGBoost on Spark任务从HDFS迁移到OSS时遇到的异常情况。通过分析异常堆栈和源代码,发现使用的`nativeBooster.saveModel`方法不支持OSS路径,而使用`write.overwrite().save`方法则能成功保存模型。最后提供了完整的Scala代码示例、Maven配置和提交命令,帮助用户顺利迁移模型存储路径。
|
8天前
|
存储 数据可视化 数据挖掘
R语言在生物信息学中的应用
【10月更文挑战第21天】生物信息学是生物学、计算机科学和信息技术相结合的交叉学科,主要研究生物大分子信息的存储、处理、分析和解释。R语言作为一种强大的统计分析工具,被广泛应用于生物信息学领域。本文将介绍R语言在生物信息学中的应用,包括基因组学、转录组学、蛋白质组学、代谢组学等方面,帮助读者了解R语言在生物信息学中的重要性和应用前景。
26 4
|
8天前
|
机器学习/深度学习 数据采集 人工智能
R语言是一种强大的编程语言,广泛应用于统计分析、数据可视化、机器学习等领域
R语言是一种广泛应用于统计分析、数据可视化及机器学习的强大编程语言。本文为初学者提供了一份使用R语言进行机器学习的入门指南,涵盖R语言简介、安装配置、基本操作、常用机器学习库介绍及实例演示,帮助读者快速掌握R语言在机器学习领域的应用。
28 3
|
8天前
|
机器学习/深度学习 并行计算 数据挖掘
R语言是一种强大的统计分析工具,广泛应用于数据分析和机器学习领域
【10月更文挑战第21天】R语言是一种强大的统计分析工具,广泛应用于数据分析和机器学习领域。本文将介绍R语言中的一些高级编程技巧,包括函数式编程、向量化运算、字符串处理、循环和条件语句、异常处理和性能优化等方面,以帮助读者更好地掌握R语言的编程技巧,提高数据分析的效率。
24 2
|
7天前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
21 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
23天前
|
机器学习/深度学习 算法 搜索推荐
django调用矩阵分解推荐算法模型做推荐系统
django调用矩阵分解推荐算法模型做推荐系统
18 4
|
2月前
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
8天前
|
数据挖掘 C语言 C++
R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。
【10月更文挑战第21天】时间序列分析是一种重要的数据分析方法,广泛应用于经济学、金融学、气象学、生态学等领域。R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。本文将介绍使用R语言进行时间序列分析的基本概念、方法和实例,帮助读者掌握R语言在时间序列分析中的应用。
27 3
|
6月前
|
数据可视化 数据挖掘 API
【R语言实战】聚类分析及可视化
【R语言实战】聚类分析及可视化