R语言随机波动率(SV)模型、MCMC的Metropolis-Hastings算法金融应用:预测标准普尔SP500指数

简介: R语言随机波动率(SV)模型、MCMC的Metropolis-Hastings算法金融应用:预测标准普尔SP500指数

在这个例子中,我们考虑随机波动率模型 SV0 的应用,例如在金融领域。

统计模型

随机波动率模型定义如下

并为

其中 yt 是因变量,xt 是 yt 的未观察到的对数波动率。N(m,σ2) 表示均值 m 和方差 σ2 的正态分布。

α、β 和 σ 是需要估计的未知参数。

BUGS语言统计模型

文件内容 'sv.bug'

moelfle = 'sv.bug' # BUGS模型文件名
cat(readLies(moelfle ), sep = "\\n")
# 随机波动率模型SV_0
# 用于随机波动率模型
var y\[t\_max\], x\[t\_max\], prec\_y\[t\_max\]
model
{
  alha ~ dnorm(0,10000)
  logteta ~ dnorm(0,.1)
  bea <- ilogit(loit_ta)
  lg_sima ~ dnorm(0, 1)
  sia <- exp(log_sigma)
  x\[1\] ~ dnorm(0, 1/sma^2)
  pr_y\[1\] <- exp(-x\[1\])
  y\[1\] ~ dnorm(0, prec_y\[1\])
  for (t in 2:t_max)
  {
    x\[t\] ~ dnorm(aa + eta*(t-1\]-alha, 1/ia^2)
    pr_y\[t\] <- exp(-xt
t)
    y\[t\] ~ dnorm(0, prec_yt
t)
  }

设置

设置随机数生成器种子以实现可重复性

set.seed(0)

加载模型并加载或模拟数据

sample_data = TRUE # 模拟数据或SP500数据
t_max = 100
if (!sampe_ata) {
# 加载数据  tab = read.csv('SP500.csv')
  y = diff(log(rev(tab$ose)))
  SP5ate_str = revtab$te\[-1\])
  ind = 1:t_max
  y = yind
ind
  SP500\_dae\_r = SP0dae_trind
ind
  SP500\_e\_num = as.Date(SP500_dtetr)

模型参数

if (!smle_dta) {
  dat = list(t_ma=ax, y=y)
} else {
  sigrue = .4; alpa_rue = 0; bettrue=.99;
  dat = list(t\_mx=\_mx, sigm_tue=simarue,
              alpatrue=alhatrue, bet\_tue=e\_true)
}

如果模拟数据,编译BUGS模型和样本数据

data = mdl$da()

绘制数据

对数收益率

Biips粒子边际Metropolis-Hastings

我们现在运行Biips粒子边际Metropolis-Hastings (Particle Marginal Metropolis-Hastings),以获得参数 α、β 和 σ 以及变量 x 的后验 MCMC 样本。

PMMH的参数

n_brn = 5000 #  预烧/适应迭代的数量
n_ir = 10000 #预烧后的迭代次数
thn = 5 #对MCMC输出进行稀释
n_art = 50 # 用于SMC的nb个粒子
para\_nmes = c('apha', 'loit\_bta', 'logsgma') # 用MCMC更新的变量名称(其他变量用SMC更新)。
latetnams = c('x') # 用SMC更新的、需要监测的变量名称

初始化PMMH

运行 PMMH

update(b\_pmh, n\_bun, _rt) #预烧和拟合迭代


samples(oj\_mh, ter, n\_art, thin=hn) # 采样

汇总统计

summary(otmmh, prob=c(.025, .975))

计算核密度估计

density(out_mh)

参数的后验均值和置信区间

for (k in 1:length(pram_names)) {
  suparam = su\_pmm\[pam_as\[k
\[pam\_as\[k\]\]
  cat(param$q)
}

参数的MCMC样本的踪迹

if (amldata)
  para\_tue = c(lp\_tue, log(dt$bea_rue/(-dta$eatru)), log(smtue))
)
for (k in 1:length(param_aes)) {
  smps_pm = tmmh\[paranesk
\[paranesk\]
  plot(samlespram

1,

1,

PMMH:跟踪样本参数



点击标题查阅往期相关内容


使用R语言随机波动模型SV处理时间序列中的随机波动


左右滑动查看更多

01

02

03

04




参数后验的直方图和 KDE 估计

for (k in 1:length(paramns)) {
  samps\_aram = out\_mmh\[pramnaes\[k
\[pramnaes\[k\]\]
  hist(sple_param)
  if (sample_data)
    points(parm_true)
}

PMMH:直方图后验参数

for (k in 1:length(parm) {
  kd\_pram =kde\_mm\[paramames\[k
\[paramames\[k\]\]
  plot(kd_arm, col'blue
  if (smpldata)
    points(ar_truek
k)
}

PMMH:KDE 估计后验参数

x 的后均值和分位数

x\_m\_mean = x$mean
x\_p\_quant =x$quant
plot(xx, yy)
polygon(xx, yy)
lines(1:t\_max, x\_p_man)
if (ame_at) {
  lines(1:t\_ax, x\_true)
} else
  legend(
         bt='n)

PMMH:后验均值和分位数

x 的 MCMC 样本的踪迹

par(mfrow=c(2,2))
for (k in 1:length) {
  tk = ie_inex\[k\]
      
  if (sample_data)
    points(0, dtax_t
}
if (sml_aa) {
  plot(0
  legend('center')
}

PMMH:跟踪样本 x

x 后验的直方图和核密度估计

par(mfow=c(2,2))
for (k in 1:length(tie_dex)) {
  tk = tmnexk
k
  hist(ot_m$xtk,
tk,
       main=aste(t=', t, se='')
  if (sample_data)
    points(ata$x_ret
t, 
}
if (saml_dta) {
  plot(0, type='n', bty='n', x
  legend('center
         bty='n')
}

PMMH:后_边际_直方图

par(mfrow=c(2,2))
for (k in 1:length(idx)) {
  tk =m_dxk
k
  plot(kmmk\]\]  if (alata)
    point(dat_rk
k, 0)
}
if (aldt) {
  plot(0, type='n', bty='n', x, pt.bg=c(4,NA)')
}


相关文章
|
1月前
|
机器学习/深度学习 人工智能 JSON
微软rStar2-Agent:新的GRPO-RoC算法让14B模型在复杂推理时超越了前沿大模型
Microsoft Research最新推出的rStar2-Agent在AIME24数学基准测试中以80.6%的准确率超越超大规模模型DeepSeek-R1,展现“思考更聪明”而非“更长”的AI推理新方向。
110 8
微软rStar2-Agent:新的GRPO-RoC算法让14B模型在复杂推理时超越了前沿大模型
|
20天前
|
机器学习/深度学习 并行计算 算法
【CPOBP-NSWOA】基于豪冠猪优化BP神经网络模型的多目标鲸鱼寻优算法研究(Matlab代码实现)
【CPOBP-NSWOA】基于豪冠猪优化BP神经网络模型的多目标鲸鱼寻优算法研究(Matlab代码实现)
|
20天前
|
机器学习/深度学习 资源调度 算法
遗传算法模型深度解析与实战应用
摘要 遗传算法(GA)作为一种受生物进化启发的优化算法,在复杂问题求解中展现出独特优势。本文系统介绍了GA的核心理论、实现细节和应用经验。算法通过模拟自然选择机制,利用选择、交叉、变异三大操作在解空间中进行全局搜索。与梯度下降等传统方法相比,GA不依赖目标函数的连续性或可微性,特别适合处理离散优化、多目标优化等复杂问题。文中详细阐述了染色体编码、适应度函数设计、遗传操作实现等关键技术,并提供了Python代码实现示例。实践表明,GA的成功应用关键在于平衡探索与开发,通过精心调参维持种群多样性同时确保收敛效率
|
20天前
|
机器学习/深度学习 边缘计算 人工智能
粒子群算法模型深度解析与实战应用
蒋星熠Jaxonic是一位深耕智能优化算法领域多年的技术探索者,专注于粒子群优化(PSO)算法的研究与应用。他深入剖析了PSO的数学模型、核心公式及实现方法,并通过大量实践验证了其在神经网络优化、工程设计等复杂问题上的卓越性能。本文全面展示了PSO的理论基础、改进策略与前沿发展方向,为读者提供了一份详尽的技术指南。
粒子群算法模型深度解析与实战应用
|
20天前
|
机器学习/深度学习 运维 算法
基于粒子群优化算法的配电网光伏储能双层优化配置模型[IEEE33节点](选址定容)(Matlab代码实现)
基于粒子群优化算法的配电网光伏储能双层优化配置模型[IEEE33节点](选址定容)(Matlab代码实现)
|
2月前
|
传感器 算法 定位技术
KF,EKF,IEKF 算法的基本原理并构建推导出四轮前驱自主移动机器人的运动学模型和观测模型(Matlab代码实现)
KF,EKF,IEKF 算法的基本原理并构建推导出四轮前驱自主移动机器人的运动学模型和观测模型(Matlab代码实现)
|
20天前
|
机器学习/深度学习 存储 算法
基于模型预测算法的混合储能微电网双层能量管理系统研究(Matlab代码实现)
基于模型预测算法的混合储能微电网双层能量管理系统研究(Matlab代码实现)
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
7月前
|
数据采集 机器学习/深度学习 数据可视化
探索大数据分析的无限可能:R语言的应用与实践
探索大数据分析的无限可能:R语言的应用与实践
258 9
|
数据可视化 数据挖掘 API
【R语言实战】聚类分析及可视化
【R语言实战】聚类分析及可视化

热门文章

最新文章