重磅!66 个机器学习硬核资源,请务必收藏!

简介: 重磅!66 个机器学习硬核资源,请务必收藏!

周末,红色石头在浏览网页的时候偶遇一个非常不错的机器学习、深度学习资源,这个网站总共汇集了 66 个精选的 AI 资源,非常不错!是一个很好的机器学习加油站!


首先放上这个网站的网址:


https://bestofml.com/


image.png


这份资源的名称就叫做:best resources in Machine Learning,即 bestofml


bestofml 资源总共包含 5 大模块,分别是:


  • 书籍
  • 课程
  • 招聘网站
  • 新闻和博客
  • 论文


下面我们分别来看一下。


书籍(12 个)

书籍部分总共包含 12 个资源:

image.png

image.png

image.png

image.png

image.png

image.png

image.png

image.png

image.png

image.png

image.png

image.png

课程(26 个)


课程部分总共包含 26 个资源,这里仅列出几个代表:

image.png

image.png

image.png

image.png

image.png

image.png

image.png

image.png

招聘网站(5 个)


招聘平台总共有 5 个:

image.png

image.png

image.png

image.png

image.png

新闻和博客(19 个)

新闻饿博客总共包含 19 个资源,这里仅列出几个代表:

image.png

image.png

image.png

image.png

image.png

image.png

论文(4 个)

论文总共包含 4 个资源:

image.png

image.png

image.png

image.png

这份完备的 AI 资源列表也有 GitHub 地址:


https://github.com/RemoteML/bestofml


开源有益!这份资源列表应该能节约你不少找资料的时间,比较适合机器学习初学者,希望对你有所帮助!喜欢的话赶快收藏吧~


相关文章
|
机器学习/深度学习 开发工具 云计算
Azure - 机器学习:创建机器学习所需资源,配置工作区
Azure - 机器学习:创建机器学习所需资源,配置工作区
85 0
|
7月前
|
机器学习/深度学习 SQL 存储
机器学习PAI常见问题之资源不足如何解决
PAI(平台为智能,Platform for Artificial Intelligence)是阿里云提供的一个全面的人工智能开发平台,旨在为开发者提供机器学习、深度学习等人工智能技术的模型训练、优化和部署服务。以下是PAI平台使用中的一些常见问题及其答案汇总,帮助用户解决在使用过程中遇到的问题。
|
4月前
|
机器学习/深度学习 人工智能 前端开发
【机器学习】FlyFlowerSong【人工智能】资源指南
FlyFlowerSong是一个创新的音乐合成与处理项目,它利用先进的机器学习算法,为用户提供了一个简单而有趣的音乐创作平台。作为人工智能领域的技术自媒体创作者,我整理了关于FlyFlowerSong的完整教程、论文复现指南以及demo项目源代码,旨在帮助开发者、音乐爱好者以及AI研究者深入探索这一领域。
54 1
|
5月前
|
机器学习/深度学习 人工智能 运维
人工智能平台PAI使用问题之一直显示"正在等待在云端的gateway资源",该如何处理
阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。
|
5月前
|
机器学习/深度学习 人工智能 分布式计算
人工智能平台PAI使用问题之部署时是否可以自定义资源的区域
阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。
|
6月前
|
机器学习/深度学习 算法 TensorFlow
算法金 | 只需十四步:从零开始掌握Python机器学习(附资源)
```markdown ## 摘要 全网同名「算法金」的作者分享了一篇针对Python机器学习入门的教程。教程旨在帮助零基础学习者掌握Python和机器学习,利用免费资源成为实践者。内容分为基础篇和进阶篇,覆盖Python基础、机器学习概念、数据预处理、科学计算库(如NumPy、Pandas和Matplotlib)以及深度学习(TensorFlow、Keras)。此外,还包括进阶算法如SVM、随机森林和神经网络。教程还强调了实践和理解最新趋势的重要性。
81 0
算法金 | 只需十四步:从零开始掌握Python机器学习(附资源)
|
6月前
|
机器学习/深度学习 分布式计算 监控
在大数据模型训练中,关键步骤包括数据收集与清洗、特征工程、数据划分;准备分布式计算资源
【6月更文挑战第28天】在大数据模型训练中,关键步骤包括数据收集与清洗、特征工程、数据划分;准备分布式计算资源,选择并配置模型如深度学习架构;通过初始化、训练、验证进行模型优化;监控性能并管理资源;最后保存模型并部署为服务。过程中要兼顾数据隐私、安全及法规遵守,利用先进技术提升效率。
117 0
|
6月前
|
机器学习/深度学习 数据采集 人工智能
【机器学习】CLIP模型在有限计算资源下的性能探究:从数据、架构到训练策略
【机器学习】CLIP模型在有限计算资源下的性能探究:从数据、架构到训练策略
374 0
|
机器学习/深度学习 数据可视化 数据挖掘
资源分享 | 从加减乘除到机器学习
资源分享 | 从加减乘除到机器学习
164 0
|
机器学习/深度学习 算法
掌握机器学习算法的三重门,附资源推荐!
掌握机器学习算法的三重门,附资源推荐!
掌握机器学习算法的三重门,附资源推荐!

热门文章

最新文章