火爆网络的《神经网络与深度学习》,有人把它翻译成了中文版!

简介: 火爆网络的《神经网络与深度学习》,有人把它翻译成了中文版!

今天给大家介绍一本非常好的深度学习入门书籍,就是《Neural Network and Deep Learning》,中文译为《神经网络与深度学习》。这是一本解释人工神经网络和深度学习背后核心思想的免费在线书籍。书籍在线地址:


http://neuralnetworksanddeeplearning.com/about.html


该书的作者是来自 Y Combinator Research 的研究员 Michael Nielsen,他也是⼀位量⼦物理学家、科学作家、计算机编程研究⼈员。他的个人主页是:


http://michaelnielsen.org/


image.png


书籍介绍


这是我个人以为目前最好的神经网络与机器学习入门资料之一。内容非常浅显易懂,很多数学密集的区域作者都有提示。全书贯穿的是 MNIST 手写数字的识别问题,每个模型和改进都有详细注释的代码。非常适合用来入门神经网络和深度学习!


全书共分为六章,目录如下:


  • 第一章:使用神经网络识别手写数字
  • 第二章:反向传播算法如何工作
  • 第三章:改进神经网络的学习方法
  • 第四章:神经网络可以计算任何函数的可视化证明
  • 第五章:深度神经网络为何很难训练
  • 第六章:深度学习


《Neural Network and Deep Learning》这本书的⽬的是帮助读者掌握神经⽹络的核⼼概念,包括现代技术的深度学习。在完成这本书的学习之后,你将使⽤神经⽹络和深度学习来解决复杂模式识别问题。你将为使⽤神经⽹络和深度学习打下基础,来攻坚你⾃⼰设计中碰到的问题。


本书⼀个坚定的信念,是让读者更好地去深刻理解神经⽹络和深度学习,如果你很好理解了核⼼理念,你就可以很快地理解其他新的推论。这就意味着这本书的重点不是作为⼀个如何使⽤⼀些特定神经⽹络库的教程。仅仅学会如何使用库,虽然这也许能很快解决你的问题,但是,如果你想理解神经⽹络中究竟发⽣了什么,如果你想要了解今后⼏年都不会过时的原理,那么只是学习些热⻔的程序库是不够的。你需要领悟让神经⽹络⼯作的原理。


GitHub项目


作者在公开这个在线书籍的同时也开源了配套的示例代码,放置在 GitHub 上,地址如下:


https://github.com/mnielsen/neural-networks-and-deep-learning


image.png


有点缺憾的是作者 Nielsen 提供的代码是基于 Python 2.6/2.7 的。不过有位作者 Michal Daniel Dobrzanski 使用 Python 3 复现了该书的所有代码!GitHub 地址为:


https://github.com/MichalDanielDobrzanski/DeepLearningPython35


有了在线书籍和代码,可以愉快地学习了!


但不止如此!


中文翻译


最近,笔者发现有人对这份英文版的在线书进行了翻译,并整理成更易阅读的 pdf 文件,共 207 页。译者为 Xiaohu Zhu 和 Freeman Zhang。


我们来看一下中文版的目录:


image.pngimage.pngimage.pngimage.pngimage.png


我看了一下,中文版的翻译质量非常高!而且电子书的排版很好,自带书签,便于大家学习!


资源下载


《Neural Network and Deep Learning》中英文电子版 pdf 已打包完毕。需要的请自行下载,链接如下:


链接:

https://pan.baidu.com/s/1CtB6ThdgBiMVH6YBzcU8fQ 

提取码:kjwx


温馨提示:该书籍(包括中英文版)仅供学习交流使用,请勿用于任何商业用途!

相关文章
|
9天前
|
机器学习/深度学习 编解码 自动驾驶
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
32 3
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
|
1月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
135 5
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
2月前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
356 55
|
15天前
|
机器学习/深度学习 数据可视化 算法
PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
神经常微分方程(Neural ODEs)是深度学习领域的创新模型,将神经网络的离散变换扩展为连续时间动力系统。本文基于Torchdyn库介绍Neural ODE的实现与训练方法,涵盖数据集构建、模型构建、基于PyTorch Lightning的训练及实验结果可视化等内容。Torchdyn支持多种数值求解算法和高级特性,适用于生成模型、时间序列分析等领域。
162 77
PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
|
7天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
51 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
13天前
|
机器学习/深度学习 编解码 自动驾驶
YOLOv11改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
YOLOv11改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
41 16
YOLOv11改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
|
10天前
|
机器学习/深度学习 存储 大数据
RT-DETR改进策略【Backbone/主干网络】| ICLR-2023 替换骨干网络为:RevCol 一种新型神经网络设计范式
RT-DETR改进策略【Backbone/主干网络】| ICLR-2023 替换骨干网络为:RevCol 一种新型神经网络设计范式
35 11
RT-DETR改进策略【Backbone/主干网络】| ICLR-2023 替换骨干网络为:RevCol 一种新型神经网络设计范式
|
13天前
|
机器学习/深度学习 存储 大数据
YOLOv11改进策略【Backbone/主干网络】| ICLR-2023 替换骨干网络为:RevCol 一种新型神经网络设计范式
YOLOv11改进策略【Backbone/主干网络】| ICLR-2023 替换骨干网络为:RevCol 一种新型神经网络设计范式
21 0
YOLOv11改进策略【Backbone/主干网络】| ICLR-2023 替换骨干网络为:RevCol 一种新型神经网络设计范式
|
1月前
|
机器学习/深度学习 监控 算法
基于yolov4深度学习网络的排队人数统计系统matlab仿真,带GUI界面
本项目基于YOLOv4深度学习网络,利用MATLAB 2022a实现排队人数统计的算法仿真。通过先进的计算机视觉技术,系统能自动、准确地检测和统计监控画面中的人数,适用于银行、车站等场景,优化资源分配和服务管理。核心程序包含多个回调函数,用于处理用户输入及界面交互,确保系统的高效运行。仿真结果无水印,操作步骤详见配套视频。
54 18
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于yolov4深度学习网络的公共场所人流密度检测系统matlab仿真,带GUI界面
本项目使用 MATLAB 2022a 进行 YOLOv4 算法仿真,实现公共场所人流密度检测。通过卷积神经网络提取图像特征,将图像划分为多个网格进行目标检测和识别,最终计算人流密度。核心程序包括图像和视频读取、处理和显示功能。仿真结果展示了算法的有效性和准确性。
88 31

热门文章

最新文章