吴恩达《优化深度神经网络》精炼笔记(2)-- 优化算法

简介: 上节课我们主要介绍了如何建立一个实用的深度学习神经网络。

上节课我们主要介绍了如何建立一个实用的深度学习神经网络。包括Train/Dev/Test sets的比例选择,Bias和Variance的概念和区别:Bias对应欠拟合,Variance对应过拟合。接着,我们介绍了防止过拟合的两种方法:L2 regularization和Dropout。然后,介绍了如何进行规范化输入,以加快梯度下降速度和精度。然后,我们介绍了梯度消失和梯度爆炸的概念和危害,并提出了如何使用梯度初始化来降低这种风险。最后,我们介绍了梯度检查,来验证梯度下降算法是否正确。

本节课,我们将继续讨论深度神经网络中的一些优化算法,通过使用这些技巧和方法来提高神经网络的训练速度和精度。

1Mini-batch Gradient Descent


之前我们介绍的神经网络训练过程是对所有m个样本,称为batch,通过向量化计算方式,同时进行的。如果m很大,例如达到百万数量级,训练速度往往会很慢,因为每次迭代都要对所有样本进行进行求和运算和矩阵运算。我们将这种梯度下降算法称为Batch Gradient Descent。


为了解决这一问题,我们可以把m个训练样本分成若干个子集,称为mini-batches,这样每个子集包含的数据量就小了,例如只有1000,然后每次在单一子集上进行神经网络训练,速度就会大大提高。这种梯度下降算法叫做Mini-batch Gradient Descent。

image.png

Mini-batches Gradient Descent的实现过程是先将总的训练样本分成T个子集(mini-batches),然后对每个mini-batch进行神经网络训练,包括Forward Propagation,Compute Cost Function,Backward Propagation,循环至T个mini-batch都训练完毕。


for  t=1,⋯,T  {

   Forward Propagation

   ComputeCostFunction

   BackwardPropagation

   W:=W−α⋅dW

   b:=b−α⋅db

}


经过T次循环之后,所有m个训练样本都进行了梯度下降计算。这个过程,我们称之为经历了一个epoch。对于Batch Gradient Descent而言,一个epoch只进行一次梯度下降算法;而Mini-Batches Gradient Descent,一个epoch会进行T次梯度下降算法。


值得一提的是,对于Mini-Batches Gradient Descent,可以进行多次epoch训练。而且,每次epoch,最好是将总体训练数据重新打乱、重新分成T组mini-batches,这样有利于训练出最佳的神经网络模型。


2Understanding Mini-batch Gradient Descent


Batch gradient descent和Mini-batch gradient descent的cost曲线如下图所示:

image.png

对于一般的神经网络模型,使用Batch gradient descent,随着迭代次数增加,cost是不断减小的。然而,使用Mini-batch gradient descent,随着在不同的mini-batch上迭代训练,其cost不是单调下降,而是受类似noise的影响,出现振荡。但整体的趋势是下降的,最终也能得到较低的cost值。

image.png

我们来比较一下Batch gradient descent和Stachastic gradient descent的梯度下降曲线。如下图所示,蓝色的线代表Batch gradient descent,紫色的线代表Stachastic gradient descent。Batch gradient descent会比较平稳地接近全局最小值,但是因为使用了所有m个样本,每次前进的速度有些慢。Stachastic gradient descent每次前进速度很快,但是路线曲折,有较大的振荡,最终会在最小值附近来回波动,难以真正达到最小值处。而且在数值处理上就不能使用向量化的方法来提高运算速度。

image.png

实际使用中,mini-batch size不能设置得太大(Batch gradient descent),也不能设置得太小(Stachastic gradient descent)。这样,相当于结合了Batch gradient descent和Stachastic gradient descent各自的优点,既能使用向量化优化算法,又能叫快速地找到最小值。mini-batch gradient descent的梯度下降曲线如下图绿色所示,每次前进速度较快,且振荡较小,基本能接近全局最小值。

image.png

一般来说,如果总体样本数量m不太大时,例如m≤2000m≤2000,建议直接使用Batch gradient descent。如果总体样本数量m很大时,建议将样本分成许多mini-batches。推荐常用的mini-batch size为64,128,256,512。这些都是2的幂。之所以这样设置的原因是计算机存储数据一般是2的幂,这样设置可以提高运算速度。


3Exponentially Weighted Averages


该部分我们将介绍指数加权平均(Exponentially weighted averages)的概念。


举个例子,记录半年内伦敦市的气温变化,并在二维平面上绘制出来,如下图所示:



image.png

看上去,温度数据似乎有noise,而且抖动较大。如果我们希望看到半年内气温的整体变化趋势,可以通过移动平均(moving average)的方法来对每天气温进行平滑处理。


例如我们可以设V0=0,当成第0天的气温值。


第一天的气温与第0天的气温有关:

image.png

image.png

上面的例子中,β=0.9。ββ值决定了指数加权平均的天数,近似表示为:

image.png

这里简单解释一下公式1/(1−β)是怎么来的。准确来说,指数加权平均算法跟之前所有天的数值都有关系,根据之前的推导公式就能看出。但是指数是衰减的,一般认为衰减到1/e就可以忽略不计了。因此,根据之前的推导公式,我们只要证明:

image.png

显然,当N>>0时,上述等式是近似成立的。


至此,简单解释了为什么指数加权平均的天数的计算公式为1/(1−β)。


4Understanding Exponetially Weighted Averages


我们将指数加权平均公式的一般形式写下来:

image.png

image.png

我们已经知道了指数加权平均的递推公式。实际应用中,为了减少内存的使用,我们可以使用这样的语句来实现指数加权平均算法:


Vθ=0

Repeat {

   Get next θt

   Vθ:=βVθ+(1−β)θt

}


5Bias Correction in Exponentially Weighted Average


上文中提到当β=0.98时,指数加权平均结果如下图绿色曲线所示。但是实际上,真实曲线如紫色曲线所示。

image.png

我们注意到,紫色曲线与绿色曲线的区别是,紫色曲线开始的时候相对较低一些。这是因为开始时我们设置V0=0,所以初始值会相对小一些,直到后面受前面的影响渐渐变小,趋于正常。


修正这种问题的方法是进行偏移校正(bias correction),即在每次计算完Vt后,对Vt进行下式处理:

image.png

值得一提的是,机器学习中,偏移校正并不是必须的。因为,在迭代一次次数后(t较大),Vt受初始值影响微乎其微,紫色曲线与绿色曲线基本重合。所以,一般可以忽略初始迭代过程,等到一定迭代之后再取值,这样就不需要进行偏移校正了。


6

Gradient Descent with Momentum


该部分将介绍动量梯度下降算法,其速度要比传统的梯度下降算法快很多。做法是在每次训练时,对梯度进行指数加权平均处理,然后用得到的梯度值更新权重W和常数项b。下面介绍具体的实现过程。

image.png

原始的梯度下降算法如上图蓝色折线所示。在梯度下降过程中,梯度下降的振荡较大,尤其对于W、b之间数值范围差别较大的情况。此时每一点处的梯度只与当前方向有关,产生类似折线的效果,前进缓慢。而如果对梯度进行指数加权平均,这样使当前梯度不仅与当前方向有关,还与之前的方向有关,这样处理让梯度前进方向更加平滑,减少振荡,能够更快地到达最小值处。


权重W和常数项b的指数加权平均表达式如下:

image.png

从动量的角度来看,以权重W为例,Vdw可以成速度V,dW可以看成是加速度a。指数加权平均实际上是计算当前的速度,当前速度由之前的速度和现在的加速度共同影响。而β<1,又能限制速度Vdw过大。也就是说,当前的速度是渐变的,而不是瞬变的,是动量的过程。这保证了梯度下降的平稳性和准确性,减少振荡,较快地达到最小值处。


动量梯度下降算法的过程如下:


On iteration t:

   Compute dW, db on the current mini−batch

   VdW=βVdw+(1−β)dW

   Vdb=βVdb+(1−β)db

   W=W−αVdw, b=b−αVdb


初始时,令Vdw=0,Vdb=0。一般设置β=0.9,即指数加权平均前10天的数据,实际应用效果较好。


另外,关于偏移校正,可以不使用。因为经过10次迭代后,随着滑动平均的过程,偏移情况会逐渐消失。


补充一下,在其它文献资料中,动量梯度下降还有另外一种写法:

image.png

即消去了dW和db前的系数(1−β)。这样简化了表达式,但是学习因子α相当于变成了α/(1−β),表示α也受β的影响。从效果上来说,这种写法也是可以的,但是不够直观,且调参涉及到α,不够方便。所以,实际应用中,推荐第一种动量梯度下降的表达式。


7RMSprop


RMSprop是另外一种优化梯度下降速度的算法。每次迭代训练过程中,其权重W和常数项b的更新表达式为:

image.png

下面简单解释一下RMSprop算法的原理,仍然以下图为例,为了便于分析,令水平方向为W的方向,垂直方向为b的方向。

image.png

还有一点需要注意的是为了避免RMSprop算法中分母为零,通常可以在分母增加一个极小的常数ε:

image.png

其中,ε=10^−8,或者其它较小值。


8Adam Optimization Algorithm


Adam(Adaptive Moment Estimation)算法结合了动量梯度下降算法和RMSprop算法。其算法流程为:

image.png

实际应用中,Adam算法结合了动量梯度下降和RMSprop各自的优点,使得神经网络训练速度大大提高。


9

Learning Rate Decay


减小学习因子α也能有效提高神经网络训练速度,这种方法被称为learning rate decay。


Learning rate decay就是随着迭代次数增加,学习因子α逐渐减小。下面用图示的方式来解释这样做的好处。下图中,蓝色折线表示使用恒定的学习因子α,由于每次训练α相同,步进长度不变,在接近最优值处的振荡也大,在最优值附近较大范围内振荡,与最优值距离就比较远。绿色折线表示使用不断减小的α,随着训练次数增加,α逐渐减小,步进长度减小,使得能够在最优值处较小范围内微弱振荡,不断逼近最优值。相比较恒定的αα来说,learning rate decay更接近最优值。

image.png

image.png

其中,k为可调参数,t为mini-bach number。


除此之外,还可以设置α为关于t的离散值,随着t增加,α呈阶梯式减小。当然,也可以根据训练情况灵活调整当前的α值,但会比较耗时间。


10

The Problem of Local Optima


在使用梯度下降算法不断减小cost function时,可能会得到局部最优解(local optima)而不是局最优解(global optima)。之前我们对局部最优解的理解是形如碗状的凹槽,如下图左边所示。但是在神经网络中,local optima的概念发生了变化。准确地来说,大部分梯度为零的“最优点”并不是这些凹槽处,而是形如右边所示的马鞍状,称为saddle point。也就是说,梯度为零并不能保证都是convex(极小值),也有可能是concave(极大值)。特别是在神经网络中参数很多的情况下,所有参数梯度为零的点很可能都是右边所示的马鞍状的saddle point,而不是左边那样的local optimum。

image.png

类似马鞍状的plateaus会降低神经网络学习速度。Plateaus是梯度接近于零的平缓区域,如下图所示。在plateaus上梯度很小,前进缓慢,到达saddle point需要很长时间。到达saddle point后,由于随机扰动,梯度一般能够沿着图中绿色箭头,离开saddle point,继续前进,只是在plateaus上花费了太多时间。

image.png

总的来说,关于local optima,有两点总结:


  • 只要选择合理的强大的神经网络,一般不太可能陷入local optima
  • Plateaus可能会使梯度下降变慢,降低学习速度


值得一提的是,上文介绍的动量梯度下降,RMSprop,Adam算法都能有效解决plateaus下降过慢的问题,大大提高神经网络的学习速度。

相关文章
|
7天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
60 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
6天前
|
机器学习/深度学习 人工智能 算法
深入解析图神经网络:Graph Transformer的算法基础与工程实践
Graph Transformer是一种结合了Transformer自注意力机制与图神经网络(GNNs)特点的神经网络模型,专为处理图结构数据而设计。它通过改进的数据表示方法、自注意力机制、拉普拉斯位置编码、消息传递与聚合机制等核心技术,实现了对图中节点间关系信息的高效处理及长程依赖关系的捕捉,显著提升了图相关任务的性能。本文详细解析了Graph Transformer的技术原理、实现细节及应用场景,并通过图书推荐系统的实例,展示了其在实际问题解决中的强大能力。
72 30
|
13天前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
3天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的宝石类型识别算法matlab仿真
本项目利用GoogLeNet深度学习网络进行宝石类型识别,实验包括收集多类宝石图像数据集并按7:1:2比例划分。使用Matlab2022a实现算法,提供含中文注释的完整代码及操作视频。GoogLeNet通过其独特的Inception模块,结合数据增强、学习率调整和正则化等优化手段,有效提升了宝石识别的准确性和效率。
|
9天前
|
算法
基于大爆炸优化算法的PID控制器参数寻优matlab仿真
本研究基于大爆炸优化算法对PID控制器参数进行寻优,并通过Matlab仿真对比优化前后PID控制效果。使用MATLAB2022a实现核心程序,展示了算法迭代过程及最优PID参数的求解。大爆炸优化算法通过模拟宇宙大爆炸和大收缩过程,在搜索空间中迭代寻找全局最优解,特别适用于PID参数优化,提升控制系统性能。
|
9天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-GRU网络的数据分类识别算法matlab仿真
本项目展示了使用MATLAB2022a实现的贝叶斯优化、CNN和GRU算法优化效果。优化前后对比显著,完整代码附带中文注释及操作视频。贝叶斯优化适用于黑盒函数,CNN用于时间序列特征提取,GRU改进了RNN的长序列处理能力。
|
11天前
|
存储 缓存 监控
Docker容器性能调优的关键技巧,涵盖CPU、内存、网络及磁盘I/O的优化策略,结合实战案例,旨在帮助读者有效提升Docker容器的性能与稳定性。
本文介绍了Docker容器性能调优的关键技巧,涵盖CPU、内存、网络及磁盘I/O的优化策略,结合实战案例,旨在帮助读者有效提升Docker容器的性能与稳定性。
41 7
|
15天前
|
机器学习/深度学习 自然语言处理 语音技术
Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧
本文介绍了Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧,并通过TensorFlow和PyTorch等库展示了实现神经网络的具体示例,涵盖图像识别、语音识别等多个应用场景。
42 8
|
16天前
|
存储 关系型数据库 分布式数据库
PolarDB的PolarStore存储引擎以其高效的索引结构、优化的数据压缩算法、出色的事务处理能力著称
PolarDB的PolarStore存储引擎以其高效的索引结构、优化的数据压缩算法、出色的事务处理能力著称。本文深入解析PolarStore的内部机制及优化策略,包括合理调整索引、优化数据分布、控制事务规模等,旨在最大化其性能优势,提升数据存储与访问效率。
23 5
|
20天前
|
机器学习/深度学习 算法 关系型数据库
基于PSO-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目展示了利用粒子群优化(PSO)算法优化支持向量机(SVM)参数的过程,提高了分类准确性和泛化能力。包括无水印的算法运行效果预览、Matlab2022a环境下的实现、核心代码及详细注释、操作视频,以及对PSO和SVM理论的概述。PSO-SVM结合了PSO的全局搜索能力和SVM的分类优势,特别适用于复杂数据集的分类任务,如乳腺癌诊断等。