【深度学习入门案例】动物种类识别

简介: 【深度学习入门案例】动物种类识别

一、定义待预测数据

数据集:

1.png

代码:

# 待预测图片
test_img_path = ['./img/img.png', './img/img_1.png','./img/img_2.png','./img/img_3.png','./img/img_4.png']
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
# 展示其中大狮子图片
img1 = mpimg.imread(test_img_path[0])
plt.figure(figsize=(10, 10))
plt.imshow(img1)
plt.axis('off')
plt.show()

返回:

1.png

若是待预测图片存放在一个文件中,如左侧文件夹所示的test.txt。每一行是待预测图片的存放路径。

with open('tu.txt', 'r') as f:
    try:
        test_img_path=[]
        for line in f:
            test_img_path.append(line.strip())
    except:
        print('数据加载失败')
print(test_img_path)

返回:

1.png

二、 加载预训练模型

PaddleHub提供了两种动物识别模型:

  • resnet50_vd_animals: ResNet-vd 其实就是 ResNet-D,是ResNet 原始结构的变种,可用于图像分类和特征提取。该 PaddleHub Module 采用百度自建动物数据集训练得到,支持7978种动物的分类识别。
  • mobilenet_v2_animals: MobileNet V2 是一个轻量化的卷积神经网络,它在 MobileNet 的基础上,做了 Inverted Residuals 和 Linear bottlenecks 这两大改进。该 PaddleHub Module 是在百度自建动物数据集上训练得到的,可用于图像分类和特征提取,当前已支持7978种动物的分类识别。

代码:

import paddlehub as hub
module = hub.Module(name="resnet50_vd_animals")
# module = hub.Module(name="mobilenet_v2_animals")

三、预测

import cv2
np_images =[cv2.imread(image_path) for image_path in test_img_path]
results = module.classification(images=np_images)
for result in results:
    print(result)

返回:

1.png

四.完整源码

代码如下:

# coding=gbk
"""
作者:川川
@时间  : 2021/8/29 23:50
群:970353786
"""
# 待预测图片
# test_img_path = ['./img/img.png', './img/img_1.png','./img/img_2.png','./img/img_3.png','./img/img_4.png']
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
# 展示其中大狮子图片
# img1 = mpimg.imread(test_img_path[0])
#
# plt.figure(figsize=(10, 10))
# plt.imshow(img1)
#
# plt.axis('off')
# plt.show()
with open('tu.txt', 'r') as f:
    try:
        test_img_path=[]
        for line in f:
            test_img_path.append(line.strip())
    except:
        print('数据加载失败')
# print(test_img_path)
import paddlehub as hub
module = hub.Module(name="resnet50_vd_animals")
# module = hub.Module(name="mobilenet_v2_animals")
import cv2
np_images =[cv2.imread(image_path) for image_path in test_img_path]
results = module.classification(images=np_images)
for result in results:
    print(result)

文件架构:

1.png

目录
打赏
0
0
0
0
20
分享
相关文章
人工智能浪潮下的自我修养:从Python编程入门到深度学习实践
【10月更文挑战第39天】本文旨在为初学者提供一条清晰的道路,从Python基础语法的掌握到深度学习领域的探索。我们将通过简明扼要的语言和实际代码示例,引导读者逐步构建起对人工智能技术的理解和应用能力。文章不仅涵盖Python编程的基础,还将深入探讨深度学习的核心概念、工具和实战技巧,帮助读者在AI的浪潮中找到自己的位置。
深度学习入门:用Python构建你的第一个神经网络
在人工智能的海洋中,深度学习是那艘能够带你远航的船。本文将作为你的航标,引导你搭建第一个神经网络模型,让你领略深度学习的魅力。通过简单直观的语言和实例,我们将一起探索隐藏在数据背后的模式,体验从零开始创造智能系统的快感。准备好了吗?让我们启航吧!
152 3
深度学习中的卷积神经网络(CNN)入门
【10月更文挑战第41天】在人工智能的璀璨星空下,卷积神经网络(CNN)如一颗耀眼的新星,照亮了图像处理和视觉识别的路径。本文将深入浅出地介绍CNN的基本概念、核心结构和工作原理,同时提供代码示例,带领初学者轻松步入这一神秘而又充满无限可能的领域。
深度学习入门:循环神经网络------RNN概述,词嵌入层,循环网络层及案例实践!(万字详解!)
深度学习入门:循环神经网络------RNN概述,词嵌入层,循环网络层及案例实践!(万字详解!)
深度学习中的卷积神经网络(CNN)入门与实践
【8月更文挑战第62天】本文以浅显易懂的方式介绍了深度学习领域中的核心技术之一——卷积神经网络(CNN)。文章通过生动的比喻和直观的图示,逐步揭示了CNN的工作原理和应用场景。同时,结合具体的代码示例,引导读者从零开始构建一个简单的CNN模型,实现对图像数据的分类任务。无论你是深度学习的初学者还是希望巩固理解的开发者,这篇文章都将为你打开一扇通往深度学习世界的大门。
深度学习如何入门?
深度学习入门的指南,包括准备基础知识、学习深度学习理论、实践操作、进阶学习、参与社区和不断实践与反思等步骤。
180 0
【NLP自然语言处理】基于PyTorch深度学习框架构建RNN经典案例:构建人名分类器
【NLP自然语言处理】基于PyTorch深度学习框架构建RNN经典案例:构建人名分类器
深度学习入门:卷积神经网络 | CNN概述,图像基础知识,卷积层,池化层(超详解!!!)
深度学习入门:卷积神经网络 | CNN概述,图像基础知识,卷积层,池化层(超详解!!!)

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等