彻底弄懂 HTTP 缓存机制及原理!

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: 前言Http 缓存机制作为 web 性能优化的重要手段,对于从事 Web 开发的同学们来说,应该是知识体系库中的一个基础环节,同时对于有志成为前端架构师的同学来说是必备的知识技能。

前言


Http 缓存机制作为 web 性能优化的重要手段,对于从事 Web 开发的同学们来说,应该是知识体系库中的一个基础环节,同时对于有志成为前端架构师的同学来说是必备的知识技能。


但是对于很多前端同学来说,仅仅只是知道浏览器会对请求的静态文件进行缓存,但是为什么被缓存,缓存是怎样生效的,却并不是很清楚。


在此,我会尝试用简单明了的文字,像大家系统的介绍HTTP缓存机制,期望对各位正确的理解前端缓存有所帮助。


在介绍HTTP缓存之前,作为知识铺垫,先简单介绍一下HTTP报文


HTTP报文就是浏览器和服务器间通信时发送及响应的数据块。


浏览器向服务器请求数据,发送请求(request)报文;服务器向浏览器返回数据,返回响应(response)报文。


报文信息主要分为两部分


1.包含属性的首部(header)--------------------------附加信息(cookie,缓存信息等)与缓存相关的规则信息,均包含在header中


2.包含数据的主体部分(body)-----------------------HTTP请求真正想要传输的部分


缓存规则解析


为方便大家理解,我们认为浏览器存在一个缓存数据库,用于存储缓存信息。


在客户端第一次请求数据时,此时缓存数据库中没有对应的缓存数据,需要请求服务器,服务器返回后,将数据存储至缓存数据库中。


image.png


HTTP缓存有多种规则,根据是否需要重新向服务器发起请求来分类,我将其分为两大类(强制缓存,对比缓存)。


在详细介绍这两种规则之前,先通过时序图的方式,让大家对这两种规则有个简单了解。


已存在缓存数据时,仅基于强制缓存,请求数据的流程如下

image.png

已存在缓存数据时,仅基于对比缓存,请求数据的流程如下


image.png


对缓存机制不太了解的同学可能会问,基于对比缓存的流程下,不管是否使用缓存,都需要向服务器发送请求,那么还用缓存干什么?


这个问题,我们暂且放下,后文在详细介绍每种缓存规则的时候,会带给大家答案。可以点击此处查看浏览器的缓存机制。


我们可以看到两类缓存规则的不同,强制缓存如果生效,不需要再和服务器发生交互,而对比缓存不管是否生效,都需要与服务端发生交互。 两类缓存规则可以同时存在,强制缓存优先级高于对比缓存,也就是说,当执行强制缓存的规则时,如果缓存生效,直接使用缓存,不再执行对比缓存规则。


强制缓存


从上文我们得知,强制缓存,在缓存数据未失效的情况下,可以直接使用缓存数据,那么浏览器是如何判断缓存数据是否失效呢?


我们知道,在没有缓存数据的时候,浏览器向服务器请求数据时,服务器会将数据和缓存规则一并返回,缓存规则信息包含在响应header中。


对于强制缓存来说,响应header中会有两个字段来标明失效规则(Expires/Cache-Control),使用chrome的开发者工具,可以很明显的看到对于强制缓存生效时,网络请求的情况。可以点击此处查看浏览器的缓存机制。


image.png


Expires


Expires的值为服务端返回的到期时间,即下一次请求时,请求时间小于服务端返回的到期时间,直接使用缓存数据。


不过Expires 是HTTP 1.0的东西,现在默认浏览器均默认使用HTTP 1.1,所以它的作用基本忽略。


另一个问题是,到期时间是由服务端生成的,但是客户端时间可能跟服务端时间有误差,这就会导致缓存命中的误差。 所以HTTP 1.1 的版本,使用Cache-Control替代。


Cache-Control Cache-Control 是最重要的规则。常见的取值有private、public、no-cache、max-age,no-store,默认为private。 private:             客户端可以缓存 public:              客户端和代理服务器都可缓存(前端的同学,可以认为public和private是一样的) max-age=xxx:   缓存的内容将在 xxx 秒后失效 no-cache:          需要使用对比缓存来验证缓存数据(后面介绍) no-store:           所有内容都不会缓存,强制缓存,对比缓存都不会触发(对于前端开发来说,缓存越多越好,so...基本上和它说886)

image.png

举个板栗  图中Cache-Control仅指定了max-age,所以默认为private,缓存时间为31536000秒(365天) 也就是说,在365天内再次请求这条数据,都会直接获取缓存数据库中的数据,直接使用。


对比缓存


对比缓存,顾名思义,需要进行比较判断是否可以使用缓存。


浏览器第一次请求数据时,服务器会将缓存标识与数据一起返回给客户端,客户端将二者备份至缓存数据库中。


再次请求数据时,客户端将备份的缓存标识发送给服务器,服务器根据缓存标识进行判断,判断成功后,返回304状态码,通知客户端比较成功,可以使用缓存数据。


第一次访问:

image.png

再次访问:


通过两图的对比,我们可以很清楚的发现,在对比缓存生效时,状态码为304,并且报文大小和请求时间大大减少。


原因是,服务端在进行标识比较后,只返回header部分,通过状态码通知客户端使用缓存,不再需要将报文主体部分返回给客户端。


对于对比缓存来说,缓存标识的传递是我们着重需要理解的,它在请求header和响应header间进行传递,一共分为两种标识传递,接下来,我们分开介绍。

image.png

Last-Modified  /  If-Modified-Since Last-Modified: 服务器在响应请求时,告诉浏览器资源的最后修改时间。  If-Modified-Since: 再次请求服务器时,通过此字段通知服务器上次请求时,服务器返回的资源最后修改时间。


服务器收到请求后发现有头If-Modified-Since 则与被请求资源的最后修改时间进行比对。


若资源的最后修改时间大于If-Modified-Since,说明资源又被改动过,则响应整片资源内容,返回状态码200; 若资源的最后修改时间小于或等于If-Modified-Since,说明资源无新修改,则响应HTTP 304,告知浏览器继续使用所保存的cache。


image.png


Etag  /  If-None-Match(优先级高于Last-Modified  /  If-Modified-Since)


Etag: 服务器响应请求时,告诉浏览器当前资源在服务器的唯一标识(生成规则由服务器决定)。

image.png

If-None-Match: 再次请求服务器时,通过此字段通知服务器客户段缓存数据的唯一标识。 服务器收到请求后发现有头If-None-Match 则与被请求资源的唯一标识进行比对, 不同,说明资源又被改动过,则响应整片资源内容,返回状态码200; 相同,说明资源无新修改,则响应HTTP 304,告知浏览器继续使用所保存的cache。

image.png

总结


对于强制缓存,服务器通知浏览器一个缓存时间,在缓存时间内,下次请求,直接用缓存,不在时间内,执行比较缓存策略。可以点击此处查看浏览器的缓存机制。


对于比较缓存,将缓存信息中的Etag和Last-Modified通过请求发送给服务器,由服务器校验,返回304状态码时,浏览器直接使用缓存。


浏览器第一次请求:

image.png

浏览器再次请求时:

image.png


image.png

相关文章
|
7月前
|
缓存 并行计算 PyTorch
PyTorch CUDA内存管理优化:深度理解GPU资源分配与缓存机制
本文深入探讨了PyTorch中GPU内存管理的核心机制,特别是CUDA缓存分配器的作用与优化策略。文章分析了常见的“CUDA out of memory”问题及其成因,并通过实际案例(如Llama 1B模型训练)展示了内存分配模式。PyTorch的缓存分配器通过内存池化、延迟释放和碎片化优化等技术,显著提升了内存使用效率,减少了系统调用开销。此外,文章还介绍了高级优化方法,包括混合精度训练、梯度检查点技术及自定义内存分配器配置。这些策略有助于开发者在有限硬件资源下实现更高性能的深度学习模型训练与推理。
1282 0
|
9月前
|
安全 算法 网络协议
解析:HTTPS通过SSL/TLS证书加密的原理与逻辑
HTTPS通过SSL/TLS证书加密,结合对称与非对称加密及数字证书验证实现安全通信。首先,服务器发送含公钥的数字证书,客户端验证其合法性后生成随机数并用公钥加密发送给服务器,双方据此生成相同的对称密钥。后续通信使用对称加密确保高效性和安全性。同时,数字证书验证服务器身份,防止中间人攻击;哈希算法和数字签名确保数据完整性,防止篡改。整个流程保障了身份认证、数据加密和完整性保护。
|
4月前
|
存储 网络协议 安全
HTTP 协议及会话跟踪机制详解
本文详解了 HTTP 协议的核心知识,包括其定义(超文本传输协议,基于 TCP,规定客户端与服务器通信规则)及与 HTTPS 的区别(安全性、端口、资源消耗)。 介绍了 GET 与 POST 请求的差异(参数限制、安全性、应用场景),以及 Restful 风格(通过 URL 定位资源,请求方式决定操作)。列举了常见 HTTP 状态码(如 200 成功、404 资源未找到),对比了转发与重定向的区别(服务器端一次请求 vs 客户端两次请求)。 还阐述了会话跟踪机制:Cookie 基于客户端存储,通过Set-Cookie和Cookie头实现,安全性较低;Session 基于服务端存储,依赖 C
375 1
|
5月前
|
Web App开发 网络协议 应用服务中间件
HTTP2.0 从原理到实践,保证把你治得服服帖帖!
HTTP/2 是 HTTP/1.1 的重要升级,通过多路复用、头部压缩、服务器推送等特性显著提升性能与效率。本文详细解析了 HTTP/2 的优势、配置方法及实际应用,涵盖 Nginx/Apache/IIS 配置、curl 测试工具使用,并对比 HTTP/1.1 指出其优化点。同时提醒需注意 HTTPS 支持、客户端兼容性等问题,助你高效掌握并运用 HTTP/2 技术。
592 5
HTTP2.0 从原理到实践,保证把你治得服服帖帖!
|
6月前
|
缓存 搜索推荐 CDN
HTTP缓存策略的区别和解决的问题
总的来说,HTTP缓存策略是一种权衡,需要根据具体的应用场景和需求来选择合适的策略。理解和掌握这些策略,可以帮助我们更好地优化网页性能,提高用户的浏览体验。
183 11
|
9月前
|
存储 缓存 分布式计算
【赵渝强老师】Spark RDD的缓存机制
Spark RDD通过`persist`或`cache`方法可将计算结果缓存,但并非立即生效,而是在触发action时才缓存到内存中供重用。`cache`方法实际调用了`persist(StorageLevel.MEMORY_ONLY)`。RDD缓存可能因内存不足被删除,建议结合检查点机制保证容错。示例中,读取大文件并多次调用`count`,使用缓存后执行效率显著提升,最后一次计算仅耗时98ms。
219 0
【赵渝强老师】Spark RDD的缓存机制
|
11月前
|
前端开发 网络协议 安全
【网络原理】——HTTP协议、fiddler抓包
HTTP超文本传输,HTML,fiddler抓包,URL,urlencode,HTTP首行方法,GET方法,POST方法
|
11月前
【网路原理】——HTTP状态码和Postman使用
状态码(200,404,403,405,500,504,302),Postman下载和使用构造请求
|
11月前
|
存储 JSON 缓存
【网络原理】——HTTP请求头中的属性
HTTP请求头,HOST、Content-Agent、Content-Type、User-Agent、Referer、Cookie。
|
11月前
|
安全 算法 网络协议
【网络原理】——图解HTTPS如何加密(通俗简单易懂)
HTTPS加密过程,明文,密文,密钥,对称加密,非对称加密,公钥和私钥,证书加密