UniT | Facebook发布全新智能通用Agent!

简介: UniT | Facebook发布全新智能通用Agent!

image.png

今天给大家介绍Facebook AI Research (FAIR)团队研究人员Ronghang Hu 和Amanpreet Singh合作发表在arxiv上的Unified Transformer框架:UniT,该框架可以同时进行多模态多任务预测。


UniT从跨领域的任务中学习最重要的任务,领域范围包括对象检测、语言理解和多模态推理等。UniT模型使用编码器-解码器架构,编码器对输入模态进行编码,使用共享的解码器对编码前的输入进行解码,然后使用task specific的输出头进行任务预测。模型使用端到端的联合训练,每项任务的损失都会被计算在内。与以前使用Transformer进行多任务学习的研究相比,UniT任务共享相同的模型参数,而不是在不同的任务上微调。UniT可以处理多种跨领域任务。实验证实,UniT在八个数据集上同时学习七个任务,都获得了比已有工作更好的性能。图一是UniT的任务框架。


image.png

image.png

图一:UniT的任务框架


UniT模型框架


UniT建立在Transformer编码器-解码器体系结构上,跨模态同时学习多个任务。每个输入模态都有一个单独的编码器,所有任务共享一个解码器,外加一个task specific任务头进行预测。图二是UniT模型的技术框架。UniT考虑两种输入模态:图像和文本。对于图像输入,UniT应用卷积神经网络提取视觉特征,然后用Transformer编码器进一步将视觉特征编码到隐藏状态中,以融合全局上下文信息。对于语言输入,UniT使用BERT,将输入单词(例如questions)编码为BERT的最后一层隐藏状态。UniT将输入模态编码成隐藏状态序列之后,在单个编码模态或两个编码模态的串联序列上应用Transformer解码器。最后,特征表示被传递到一个task specific的head上,例如一个简单的两层分类器,输出最终的预测。UniT可以很容易地扩展到更多的模态和输入。实验结果表明,UniT模型可以在8个数据集上联合学习7个不同的任务,并获得不错的效果。图二是UniT模型的技术框架。


image.png

image.png

图二:UniT模型技术框架


总结


UniT证明了transformer框架可以应用于多个领域,在一个编解码器中联合处理多个任务。UniT模型同时处理八个数据集中的七个任务,并通过一组共享参数在每个任务上都实现强大的性能。通Transformer架构,UniT模型朝着构建通用智能Agent迈出了一步,该智能Agent能够处理不同领域的广泛应用,包括视觉感知、语言理解和多种模式的推理。


目录
相关文章
|
4月前
|
存储 API
LangChain与智能Agent构建问题之MetaGPT中工程师智能体代码错误如何解决
LangChain与智能Agent构建问题之MetaGPT中工程师智能体代码错误如何解决
54 1
|
6月前
|
人工智能 自然语言处理 文字识别
DeepMind首发游戏AI智能体SIMA:开启虚拟世界的智能探索之旅
【4月更文挑战第3天】DeepMind推出了SIMA,一种能在多个3D环境中执行语言指令的智能体,标志着AI在理解和互动虚拟世界上的进步。SIMA通过多样化的训练数据学习导航、操作、决策等技能,并结合预训练模型处理高维度输入输出。尽管在复杂任务上仍有提升空间,SIMA展现了正向迁移能力和潜力,为AI研究和未来机器人技术铺平道路。然而,仍需解决鲁棒性、可控性、评估方法及道德安全问题。
132 4
DeepMind首发游戏AI智能体SIMA:开启虚拟世界的智能探索之旅
|
4月前
|
JSON 数据格式 Python
LangChain与智能Agent构建问题之运行生成的软件如何解决
LangChain与智能Agent构建问题之运行生成的软件如何解决
45 0
|
2月前
|
人工智能 自然语言处理 API
深入浅出 LangChain 与智能 Agent:构建下一代 AI 助手
我们小时候都玩过乐高积木。通过堆砌各种颜色和形状的积木,我们可以构建出城堡、飞机、甚至整个城市。现在,想象一下如果有一个数字世界的乐高,我们可以用这样的“积木”来构建智能程序,这些程序能够阅读、理解和撰写文本,甚至与我们对话。这就是大型语言模型(LLM)能够做到的,比如 GPT-4,它就像是一套庞大的乐高积木套装,等待我们来发掘和搭建。
|
6月前
|
人工智能 自然语言处理 API
深入浅出LangChain与智能Agent:构建下一代AI助手
LangChain为大型语言模型提供了一种全新的搭建和集成方式,通过这个强大的框架,我们可以将复杂的技术任务简化,让创意和创新更加易于实现。本文从LangChain是什么到LangChain的实际案例到智能体的快速发展做了全面的讲解。
281225 62
深入浅出LangChain与智能Agent:构建下一代AI助手
|
4月前
|
Web App开发 机器学习/深度学习 人工智能
AI Agent满级进化!骑马种田、办公修图,样样精通,昆仑万维等发布通用Agent新框架
【7月更文挑战第23天】AI Agent技术迎来突破,昆仑万维联合顶尖学府发布Cradle框架,赋能智能体通用控制能力。Cradle结合大型语言模型与六大核心模块,实现跨场景灵活操控,从游戏到办公软件,无师自通。实验验证其在《荒野大镖客2》等游戏及Chrome、Outlook上的卓越表现。框架开源,促进AI社区进步,但仍需面对实际应用的挑战与安全性考量。[论文](https://arxiv.org/abs/2403.03186)详述创新细节。
117 3
|
4月前
|
运维 监控 机器人
线上观看 3 万+!「智能运维MeetUp」精彩回顾,探讨智能体构建新方向
围绕大模型、可观测性、智能机器人、SysOM 等热门话题,分享系统运维硬核技术、优化实践等干货。
|
5月前
|
人工智能 自然语言处理 API
深入浅出 LangChain 与智能 Agent:构建下一代 AI 助手
深入浅出 LangChain 与智能 Agent:构建下一代 AI 助手
1356 0
深入浅出 LangChain 与智能 Agent:构建下一代 AI 助手
|
4月前
|
开发框架 自然语言处理 Python
LangChain与智能Agent构建问题之MetaGPT安装如何解决
LangChain与智能Agent构建问题之MetaGPT安装如何解决
71 0
|
5月前
|
机器学习/深度学习 人工智能 自然语言处理
智能化未来:Agent AI智能体的崛起与全球挑战
智能化未来:Agent AI智能体的崛起与全球挑战
155 1
下一篇
无影云桌面