如何用Python画各种著名数学图案 | 附图+代码

简介: 代码:46 lines (34 sloc)  1.01 KB ''' A fast Mandelbrot set wallpaper renderer reddit discussion: https://www.


代码:46 lines (34 sloc)  1.01 KB


'''

A fast Mandelbrot set wallpaper renderer



reddit discussion: https://www.reddit.com/r/math/comments/2abwyt/smooth_colour_mandelbrot/

'''

import numpy as np

from PIL import Image

from numba import jit





MAXITERS = 200

RADIUS = 100





@jit

def color(z, i):

v = np.log2(i + 1 - np.log2(np.log2(abs(z)))) / 5

if v < 1.0:

return v**4, v**2.5, v

else:

v = max(0, 2-v)

return v, v**1.5, v**3





@jit

def iterate(c):

z = 0j

for i in range(MAXITERS):

if z.real*z.real + z.imag*z.imag > RADIUS:

return color(z, i)

z = z*z + c

return 0, 0 ,0





def main(xmin, xmax, ymin, ymax, width, height):

x = np.linspace(xmin, xmax, width)

y = np.linspace(ymax, ymin, height)

z = x[None, :] + y[:, None]*1j

red, green, blue = np.asarray(np.frompyfunc(iterate, 1, 3)(z)).astype(np.float)

img = np.dstack((red, green, blue))

Image.fromarray(np.uint8(img*255)).save('mandelbrot.png')





if __name__ == '__main__':

main(-2.1, 0.8, -1.16, 1.16, 1200, 960)



多米诺洗牌算法


代码链接:https://github.com/neozhaoliang/pywonderland/tree/master/src/domino



正二十面体万花筒



代码:53 lines (40 sloc)  1.24 KB


'''

A kaleidoscope pattern with icosahedral symmetry.

'''

import numpy as np

from PIL import Image

from matplotlib.colors import hsv_to_rgb





def Klein(z):

'''Klein's j-function'''

return 1728 * (z * (z**10 + 11 * z**5 - 1))**5 / \

(-(z**20 + 1) + 228 * (z**15 - z**5) - 494 * z**10)**3





def RiemannSphere(z):

'''

   map the complex plane to Riemann's sphere via stereographic projection

   '''

t = 1 + z.real*z.real + z.imag*z.imag

return 2*z.real/t, 2*z.imag/t, 2/t-1





def Mobius(z):

'''

   distort the result image by a mobius transformation

   '''

return (z - 20)/(3*z + 1j)





def main(imgsize):

x = np.linspace(-6, 6, imgsize)

y = np.linspace(6, -6, imgsize)

z = x[None, :] + y[:, None]*1j

z = RiemannSphere(Klein(Mobius(Klein(z))))



# define colors in hsv space

H = np.sin(z[0]*np.pi)**2

S = np.cos(z[1]*np.pi)**2

V = abs(np.sin(z[2]*np.pi) * np.cos(z[2]*np.pi))**0.2

HSV = np.dstack((H, S, V))



# transform to rgb space

img = hsv_to_rgb(HSV)

Image.fromarray(np.uint8(img*255)).save('kaleidoscope.png')





if __name__ == '__main__':

import time

start = time.time()

main(imgsize=800)

end = time.time()

print('runtime: {:3f} seconds'.format(end - start))



Newton 迭代分形 



代码:46 lines (35 sloc)  1.05 KB


import numpy as np

import matplotlib.pyplot as plt

from numba import jit





# define functions manually, do not use numpy's poly1d funciton!

@jit('complex64(complex64)', nopython=True)

def f(z):

# z*z*z is faster than z**3

return z*z*z - 1





@jit('complex64(complex64)', nopython=True)

def df(z):

return 3*z*z





@jit('float64(complex64)', nopython=True)

def iterate(z):

num = 0

while abs(f(z)) > 1e-4:

w = z - f(z)/df(z)

num += np.exp(-1/abs(w-z))

z = w

return num





def render(imgsize):

x = np.linspace(-1, 1, imgsize)

y = np.linspace(1, -1, imgsize)

z = x[None, :] + y[:, None] * 1j

img = np.frompyfunc(iterate, 1, 1)(z).astype(np.float)

fig = plt.figure(figsize=(imgsize/100.0, imgsize/100.0), dpi=100)

ax = fig.add_axes([0, 0, 1, 1], aspect=1)

ax.axis('off')

ax.imshow(img, cmap='hot')

fig.savefig('newton.png')





if __name__ == '__main__':

import time

start = time.time()

render(imgsize=400)

end = time.time()

print('runtime: {:03f} seconds'.format(end - start))



李代数E8 的根系




代码链接:https://github.com/neozhaoliang/pywonderland/blob/master/src/misc/e8.py



模群的基本域 



代码链接:

https://github.com/neozhaoliang/pywonderland/blob/master/src/misc/modulargroup.py



彭罗斯铺砌 



代码链接:

https://github.com/neozhaoliang/pywonderland/blob/master/src/misc/penrose.py



Wilson 算法 



代码链接:https://github.com/neozhaoliang/pywonderland/tree/master/src/wilson



反应扩散方程模拟



代码链接:https://github.com/neozhaoliang/pywonderland/tree/master/src/grayscott



120 胞腔



代码:69 lines (48 sloc)  2.18 KB


# pylint: disable=unused-import

# pylint: disable=undefined-variable



from itertools import combinations, product

import numpy as np

from vapory import *





class Penrose(object):



GRIDS = [np.exp(2j * np.pi * i / 5) for i in range(5)]



def __init__(self, num_lines, shift, thin_color, fat_color, **config):

self.num_lines = num_lines

self.shift = shift

self.thin_color = thin_color

self.fat_color = fat_color

self.objs = self.compute_pov_objs(**config)





def compute_pov_objs(self, **config):

objects_pool = []



for rhombi, color in self.tile():

p1, p2, p3, p4 = rhombi

polygon = Polygon(5, p1, p2, p3, p4, p1,

Texture(Pigment('color', color), config['default']))

objects_pool.append(polygon)



for p, q in zip(rhombi, [p2, p3, p4, p1]):

cylinder = Cylinder(p, q, config['edge_thickness'], config['edge_texture'])

objects_pool.append(cylinder)



for point in rhombi:

x, y = point

sphere = Sphere((x, y, 0), config['vertex_size'], config['vertex_texture'])

objects_pool.append(sphere)



return Object(Union(*objects_pool))





def rhombus(self, r, s, kr, ks):

if (s - r)**2 % 5 == 1:

color = self.thin_color

else:

color = self.fat_color



point = (Penrose.GRIDS[r] * (ks - self.shift[s])

- Penrose.GRIDS[s] * (kr - self.shift[r])) *1j / Penrose.GRIDS[s-r].imag

index = [np.ceil((point/grid).real + shift)

for grid, shift in zip(Penrose.GRIDS, self.shift)]



vertices = []

for index[r], index[s] in [(kr, ks), (kr+1, ks), (kr+1, ks+1), (kr, ks+1)]:

vertices.append(np.dot(index, Penrose.GRIDS))



vertices_real = [(z.real, z.imag) for z in vertices]

return vertices_real, color





def tile(self):

for r, s in combinations(range(5), 2):

for kr, ks in product(range(-self.num_lines, self.num_lines+1), repeat=2):

yield self.rhombus(r, s, kr, ks)





def put_objs(self, *args):

return Object(self.objs, *args)

原文发布时间为:2017-04-15

本文来自云栖社区合作伙伴“大数据文摘”,了解相关信息可以关注“BigDataDigest”微信公众号

相关文章
|
1月前
|
开发框架 数据建模 中间件
Python中的装饰器:简化代码,增强功能
在Python的世界里,装饰器是那些静悄悄的幕后英雄。它们不张扬,却能默默地为函数或类增添强大的功能。本文将带你了解装饰器的魅力所在,从基础概念到实际应用,我们一步步揭开装饰器的神秘面纱。准备好了吗?让我们开始这段简洁而富有启发性的旅程吧!
38 6
|
9天前
|
Python
课程设计项目之基于Python实现围棋游戏代码
游戏进去默认为九路玩法,当然也可以选择十三路或是十九路玩法 使用pycharam打开项目,pip安装模块并引用,然后运行即可, 代码每行都有详细的注释,可以做课程设计或者毕业设计项目参考
51 33
|
12天前
|
算法 数据处理 Python
高精度保形滤波器Savitzky-Golay的数学原理、Python实现与工程应用
Savitzky-Golay滤波器是一种基于局部多项式回归的数字滤波器,广泛应用于信号处理领域。它通过线性最小二乘法拟合低阶多项式到滑动窗口中的数据点,在降噪的同时保持信号的关键特征,如峰值和谷值。本文介绍了该滤波器的原理、实现及应用,展示了其在Python中的具体实现,并分析了不同参数对滤波效果的影响。适合需要保持信号特征的应用场景。
65 11
高精度保形滤波器Savitzky-Golay的数学原理、Python实现与工程应用
|
10天前
|
JavaScript API C#
【Azure Developer】Python代码调用Graph API将外部用户添加到组,结果无效,也无错误信息
根据Graph API文档,在单个请求中将多个成员添加到组时,Python代码示例中的`members@odata.bind`被错误写为`members@odata_bind`,导致用户未成功添加。
36 10
|
29天前
|
数据可视化 Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
通过这些思维导图和分析说明表,您可以更直观地理解和选择适合的数据可视化图表类型,帮助更有效地展示和分析数据。
68 8
|
1月前
|
数据可视化 编译器 Python
Manim:数学可视化的强大工具 | python小知识
Manim(Manim Community Edition)是由3Blue1Brown的Grant Sanderson开发的数学动画引擎,专为数学和科学可视化设计。它结合了Python的灵活性与LaTeX的精确性,支持多领域的内容展示,能生成清晰、精确的数学动画,广泛应用于教育视频制作。安装简单,入门容易,适合教育工作者和编程爱好者使用。
288 7
|
1月前
|
API Python
【Azure Developer】分享一段Python代码调用Graph API创建用户的示例
分享一段Python代码调用Graph API创建用户的示例
55 11
|
1月前
|
测试技术 Python
探索Python中的装饰器:简化代码,增强功能
在Python的世界中,装饰器是那些能够为我们的代码增添魔力的小精灵。它们不仅让代码看起来更加优雅,还能在不改变原有函数定义的情况下,增加额外的功能。本文将通过生动的例子和易于理解的语言,带你领略装饰器的奥秘,从基础概念到实际应用,一起开启Python装饰器的奇妙旅程。
42 11
|
1月前
|
Python
探索Python中的装饰器:简化代码,增强功能
在Python的世界里,装饰器就像是给函数穿上了一件神奇的外套,让它们拥有了超能力。本文将通过浅显易懂的语言和生动的比喻,带你了解装饰器的基本概念、使用方法以及它们如何让你的代码变得更加简洁高效。让我们一起揭开装饰器的神秘面纱,看看它是如何在不改变函数核心逻辑的情况下,为函数增添新功能的吧!
|
1月前
|
程序员 测试技术 数据安全/隐私保护
深入理解Python装饰器:提升代码重用与可读性
本文旨在为中高级Python开发者提供一份关于装饰器的深度解析。通过探讨装饰器的基本原理、类型以及在实际项目中的应用案例,帮助读者更好地理解并运用这一强大的语言特性。不同于常规摘要,本文将以一个实际的软件开发场景引入,逐步揭示装饰器如何优化代码结构,提高开发效率和代码质量。
51 6