Java面试-锁的内存语义

简介: Java面试-锁的内存语义

简介:

锁的作用是让临界区互斥执行。本文阐述所得另一个重要知识点——锁的内存语义。


1、锁的释放-获取建立的happens-before关系

锁是Java并发编程中最重要的同步机制。锁除了让临界区互斥执行外,还可以让释放锁的线程向获取同一个锁的线程发送消息。

锁释放-获取的示例代码:

image.png假设线程A执行writer()方法,随后线程B执行reader()方法。根据happens-before规范,这个过程包含的happens-before关系可以分为3类。


根据程序次序规则:1 happens-before 2,2 happens-before 3, 4 happens-before 5,5 happens-before 6

根据监视器锁规则:3 happens-before 4

根据happens-before的传递性,2 happens-before 5

上述happens-before关系的图形化表现形式如图:

image.png总结:

线程A在释放锁之前所有可见的共享变量,在线程B获取同一个锁之后,将立即变得对B线程可见。


2、锁释放和获取的内存语义

当线程释放锁时,JMM会把该线程对应的本地内存中的共享变量刷新到主内存中。以上述MonitorExample程序为例,A线程释放锁后,共享数据的状态示意图如下所示:

image.png共享数据的状态示意图

当线程获取锁时,JMM会把该线程对应的本地内存置为无效。从而使得被监视器锁保护的临界区代码必须从主内存中读取共享变量。image.png锁获取的状态示意图

对比锁释放-获取锁的内存语义与volatile写-读的内存语义可以看出:锁释放与volatile写有相同的内存语义;锁获取与volatile读有相同的内存语义。

总结:


线程A释放锁,实质上是线程A向接下来要获取这个锁的某个线程发出了(线程A对共享变量所做修改的)消息。

线程B获取锁,实质上是线程B接受了之前某个线程发出的(在释放这个锁对共享变量锁做的修改的)消息。

线程A是否锁,随后线程B获取这个锁,这个过程实质上是线程A通过主内存向线程B发送消息。


3、锁内存的语义实现

分析ReentrantLock的源代码,来分析锁内存语义的具体实现机制。

示例代码:

package com.lizba.p1;
import java.util.concurrent.locks.ReentrantLock;
/**
 * <p>
 *    ReentrantLock示例代码
 * </p>
 *
 * @Author: Liziba
 * @Date: 2021/6/10 22:17
 */
public class ReentrantLockExample {
    int a = 0;
    ReentrantLock lock = new ReentrantLock();
    public void writer() {
        lock.lock();                 // 获取锁
        try {
            a++;
        } finally {
            lock.unlock();          // 释放锁
        }
    }
    public void reader() {
        lock.lock();                // 获取锁
        try {
            int i = a;
            System.out.println(i);
        } finally {
            lock.unlock();          // 释放锁
        }
    }
}

在ReentrantLock中,调用lock()方法获取锁;调用unlock()方法释放锁。

ReentrantLock的实现依赖于Java同步器框架AbstractQueuedSynchronized(AQS)。AQS使用一个整型的volatile变量(state)来维护同步状态,这个volatile变量是ReentrantLock内存语义实现的关键。

image.pngReetrantLock的类图

ReentrantLock分为公平锁和非公平锁,首先分析公平锁。

使用公平锁时,加锁方法lock()的调用轨迹如下。


ReentrantLock: lock()

FairSync: lock()

AbstractQueuedSynchronizer: acquire(int arg)

ReentrantLock: tryAcquire(int acquires)

第4步开始真的加锁,下面是该方法的源代码:

 protected final boolean tryAcquire(int acquires) {
     final Thread current = Thread.currentThread();
     // 获取锁开始,首先读取volatile变量state
     int c = getState();
     if (c == 0) {
         if (!hasQueuedPredecessors() &&
             compareAndSetState(0, acquires)) {
             setExclusiveOwnerThread(current);
             return true;
         }
     }
     else if (current == getExclusiveOwnerThread()) {
         int nextc = c + acquires;
         if (nextc < 0)
             throw new Error("Maximum lock count exceeded");
         setState(nextc);
         return true;
     }
     return false;
 }

从上面的代码中可以看出,加锁方法首先读取volatile变量state。


在使用公平锁时,解锁方法unlock()调用轨迹如下:


ReentrantLock: unlock()

AbstractQueuedSynchronizer: release(int arg)

Sync: tryRelease(int release)

第3步开始真的释放锁,下面是该方法的源代码:

image.png从上面的代码中可以看出,释放锁的最后写volatile变量state。

总结公平锁:

根据volatile的happens-before规则,释放锁的线程在写volatile变量之前可见的共享变量,在获取锁的线程读取到同一个volatile变量后将立即变得对获取锁的线程可见。


现在分析非公平锁:

注意,非公平锁的释放和公平锁的释放完全一致,都是上面的源代码。所以下面只分析非公平锁的获取过程。


使用非公平锁,加锁方法lock()的调用轨迹如下:


ReentrantLock: lock()

NonfairSync: lock()

AbstractQueuedSynchronizer: compareAndSetState(int expect, int update)

第3步开始真的加锁,下面是该方法的源代码:

image.png该方法以原子操作的方式更新state变量,也就是compareAndSet() (CAS)操作。JDK文档对该方法说明如下:如果当前状态值等于预期值,则以原子方式同步状态设置为给定更新的值。此操作具有volatile读和写的内存语义。


接下来分别从编译器和处理器的角度来分析,CAS如何同时具有volatile读和volatile写的内存语义。

编译器的角度:

前文已经讲过,编译器不会对volatile读与volatile读后面的任意内存操作重排序;编译器不会对volatile写和volatile写后前面的任意内存操作重排序。组合这两个条件,意味着同时实现volatile读和volatile写的内存语义,编译器不能对CAS与CAS前面和后面任意内存操作重排序。


处理器的角度:

(本人不太懂C++)这一块总结需要看JVM源码,可能会总结错误,如需要深入理解这一块请查看《Java并发编程艺术》53页。

sun.misc.Unsafe中的compareAndSwapInt源码如下:(不懂Unsafe请看往期文章)

image.png这是一个本地方法。这个本地方法会在openJDK中调用C++代码,假设当前是X86处理器,程序会根据当前处理器的类型来决定是非cmpxchg指令添加lock前缀。如果:


程序运行在多处理器上,就为cmpxchg指令加上lock前缀(Lock Cmpxchg)

程序运行在单处理器上,就省略lock前缀(单处理器自身会维护单处理器内的顺序一致性,不需要lock前缀提供的内存屏障效果)


intel手册对lock前缀的说明


对内存的读-改-写操作原子执行。(总线锁定/缓存锁定)

禁止该指令,与之前的读和写指令重排序

把写缓冲区的所有数据刷新到内存中

上面的2、3两点所具有的内存屏障的效果,足以同时实现volatile读和volatile写的内存语义。所以JDK文档说CAS 具有volatile读和volatile写的内存语义对于处理器也是符合的。


公平锁和非公平锁的总结


公平锁和非公平锁的释放,最后都需要写一个volatile变量state

公平锁获取时,首先会去读volatile变量

非公平锁获取锁时,首先会用CAS更新volatile变量,这个操作同时具有volatile读和volatile写的内存语义


释放锁-获取锁的内存语义的实现方式总结


利用volatile变量的写-读所具有的内存语义

利用CAS所附带的volatile读和volatile写的内存语义


4、concurrent包的实现

由于Java的CAS同时具有volatile读和volatile写的内存语义,因此Java线程之间的通信方式有以下4种方式


A线程写volatile变量,随后B线程读这个volatile变量

A线程写volatile变量,随后B线程用CAS更新这个volatile变量

A线程利用CAS更新一个volatile变量,随后B线程用CAS更新这个volatile变量

A线程利用CAS更新一个volatile变量,随后B线程读这个volatile变量

Java的CAS会使用现代处理器上提供的高效机器级别的原子指令,这些原子指令以原子方式对内存执行读-改-写操作,这是在多处理器实现同步的关键。同时volatile变量的读/写和CAS可以实现线程之间的通信。这些特性就是Java整个concurrent包的基石。


concurrent包的通用化实现模式


声明共享变量volatile

使用CAS的原子条件更新来实现线程之间的同步

配合volatile的读/写和CAS具有的volatile读和写的内存语义来实现线程之间的通信。

AQS(java.util.concurrent.locks.AbstractQueuedSynchronizer)、非阻塞数据结构和原子变量类(java.util.concurrent.atomic包中的类),这些concurrent包中基础类都是使用这个模式来实现的,而concurrent包中的高层类又是依赖于这些基础类。

图示concurrent包的实现示意图

image.png

目录
相关文章
|
1月前
|
安全 Java 程序员
深入理解Java内存模型与并发编程####
本文旨在探讨Java内存模型(JMM)的复杂性及其对并发编程的影响,不同于传统的摘要形式,本文将以一个实际案例为引子,逐步揭示JMM的核心概念,包括原子性、可见性、有序性,以及这些特性在多线程环境下的具体表现。通过对比分析不同并发工具类的应用,如synchronized、volatile关键字、Lock接口及其实现等,本文将展示如何在实践中有效利用JMM来设计高效且安全的并发程序。最后,还将简要介绍Java 8及更高版本中引入的新特性,如StampedLock,以及它们如何进一步优化多线程编程模型。 ####
40 0
|
1月前
|
存储 监控 算法
Java内存管理深度剖析:从垃圾收集到内存泄漏的全面指南####
本文深入探讨了Java虚拟机(JVM)中的内存管理机制,特别是垃圾收集(GC)的工作原理及其调优策略。不同于传统的摘要概述,本文将通过实际案例分析,揭示内存泄漏的根源与预防措施,为开发者提供实战中的优化建议,旨在帮助读者构建高效、稳定的Java应用。 ####
49 8
|
1月前
|
存储 监控 算法
深入探索Java虚拟机(JVM)的内存管理机制
本文旨在为读者提供对Java虚拟机(JVM)内存管理机制的深入理解。通过详细解析JVM的内存结构、垃圾回收算法以及性能优化策略,本文不仅揭示了Java程序高效运行背后的原理,还为开发者提供了优化应用程序性能的实用技巧。不同于常规摘要仅概述文章大意,本文摘要将简要介绍JVM内存管理的关键点,为读者提供一个清晰的学习路线图。
|
1月前
|
存储 算法 Java
Java 内存管理与优化:掌控堆与栈,雕琢高效代码
Java内存管理与优化是提升程序性能的关键。掌握堆与栈的运作机制,学习如何有效管理内存资源,雕琢出更加高效的代码,是每个Java开发者必备的技能。
79 5
|
1月前
|
存储 算法 Java
Java内存管理深度解析####
本文深入探讨了Java虚拟机(JVM)中的内存分配与垃圾回收机制,揭示了其高效管理内存的奥秘。文章首先概述了JVM内存模型,随后详细阐述了堆、栈、方法区等关键区域的作用及管理策略。在垃圾回收部分,重点介绍了标记-清除、复制算法、标记-整理等多种回收算法的工作原理及其适用场景,并通过实际案例分析了不同GC策略对应用性能的影响。对于开发者而言,理解这些原理有助于编写出更加高效、稳定的Java应用程序。 ####
|
1月前
|
安全 Java 程序员
Java内存模型的深入理解与实践
本文旨在深入探讨Java内存模型(JMM)的核心概念,包括原子性、可见性和有序性,并通过实例代码分析这些特性在实际编程中的应用。我们将从理论到实践,逐步揭示JMM在多线程编程中的重要性和复杂性,帮助读者构建更加健壮的并发程序。
|
1月前
|
存储 监控 算法
Java内存管理的艺术:深入理解垃圾回收机制####
本文将引领读者探索Java虚拟机(JVM)中垃圾回收的奥秘,解析其背后的算法原理,通过实例揭示调优策略,旨在提升Java开发者对内存管理能力的认知,优化应用程序性能。 ####
55 0
|
7月前
|
安全 Java 程序员
Java并发编程中的锁机制与优化策略
【6月更文挑战第17天】在Java并发编程的世界中,锁是维护数据一致性和线程安全的关键。本文将深入探讨Java中的锁机制,包括内置锁、显式锁以及读写锁的原理和使用场景。我们将通过实际案例分析锁的优化策略,如减少锁粒度、使用并发容器以及避免死锁的技巧,旨在帮助开发者提升多线程程序的性能和可靠性。
|
6月前
|
存储 缓存 Java
Java面试题:解释Java中的内存屏障的作用,解释Java中的线程局部变量(ThreadLocal)的作用和使用场景,解释Java中的锁优化,并讨论乐观锁和悲观锁的区别
Java面试题:解释Java中的内存屏障的作用,解释Java中的线程局部变量(ThreadLocal)的作用和使用场景,解释Java中的锁优化,并讨论乐观锁和悲观锁的区别
68 0
|
8月前
|
安全 Java 编译器
Java并发编程中的锁优化策略
【5月更文挑战第30天】 在多线程环境下,确保数据的一致性和程序的正确性是至关重要的。Java提供了多种锁机制来管理并发,但不当使用可能导致性能瓶颈或死锁。本文将深入探讨Java中锁的优化策略,包括锁粗化、锁消除、锁降级以及读写锁的使用,以提升并发程序的性能和响应能力。通过实例分析,我们将了解如何在不同场景下选择和应用这些策略,从而在保证线程安全的同时,最小化锁带来的开销。

热门文章

最新文章