科学计算工具NumPy(3):ndarray的元素处理

简介: 科学计算工具NumPy(3):ndarray的元素处理

科学计算工具NumPy(1):ndarray的创建于数据类型


科学计算工具NumPy(2):ndarray的矩阵处理


科学计算工具NumPy(3):ndarray的元素处理


元素计算函数

ceil(): 向上最接近的整数,参数是 number 或 array


floor(): 向下最接近的整数,参数是 number 或 array


rint(): 四舍五入,参数是 number 或 array

isnan(): 判断元素是否为 NaN(Not a Number),参数是 number 或 array

multiply(): 元素相乘,参数是 number 或 array

divide(): 元素相除,参数是 number 或 array

abs():元素的绝对值,参数是 number 或 array

where(condition, x, y): 三元运算符,x if condition else y

# randn() 返回具有标准正态分布的序列。
arr = np.random.randn(2,3)
print(arr)
print(np.ceil(arr))
print(np.floor(arr))
print(np.rint(arr))
print(np.isnan(arr))
print(np.multiply(arr, arr))
print(np.divide(arr, arr))
print(np.where(arr > 0, 1, -1))

运行结果:

# print(arr)
[[-0.75803752  0.0314314   1.15323032]
 [ 1.17567832  0.43641395  0.26288021]]
# print(np.ceil(arr))
[[-0.  1.  2.]
 [ 2.  1.  1.]]
# print(np.floor(arr))
[[-1.  0.  1.]
 [ 1.  0.  0.]]
# print(np.rint(arr))
[[-1.  0.  1.]
 [ 1.  0.  0.]]
# print(np.isnan(arr))
[[False False False]
 [False False False]]
# print(np.multiply(arr, arr))
[[  5.16284053e+00   1.77170104e+00   3.04027254e-02]
 [  5.11465231e-03   3.46109263e+00   1.37512421e-02]]
# print(np.divide(arr, arr))
[[ 1.  1.  1.]
 [ 1.  1.  1.]]
# print(np.where(arr > 0, 1, -1))
[[ 1  1 -1]
 [-1  1  1]]

元素统计函数

np.mean(), np.sum():所有元素的平均值,所有元素的和,参数是 number 或 array


np.max(), np.min():所有元素的最大值,所有元素的最小值,参数是 number 或 array


np.std(), np.var():所有元素的标准差,所有元素的方差,参数是 number 或 array

np.argmax(), np.argmin():最大值的下标索引值,最小值的下标索引值,参数是 number 或 array

np.cumsum(), np.cumprod():返回一个一维数组,每个元素都是之前所有元素的 累加和 和 累乘积,参数是 number 或 array

多维数组默认统计全部维度,axis参数可以按指定轴心统计,值为0则按列统计,值为1则按行统计。

arr = np.arange(12).reshape(3,4)
print(arr)
print(np.cumsum(arr)) # 返回一个一维数组,每个元素都是之前所有元素的 累加和
print(np.sum(arr)) # 所有元素的和
print(np.sum(arr, axis=0)) # 数组的按列统计和
print(np.sum(arr, axis=1)) # 数组的按行统计和

运行结果:

# print(arr)
[[ 0  1  2  3]
 [ 4  5  6  7]
 [ 8  9 10 11]]
# print(np.cumsum(arr)) 
[ 0  1  3  6 10 15 21 28 36 45 55 66]
# print(np.sum(arr)) # 所有元素的和
66
# print(np.sum(arr, axis=0)) # 0表示对数组的每一列的统计和
[12 15 18 21]
# print(np.sum(arr, axis=1)) # 1表示数组的每一行的统计和
[ 6 22 38]

元素判断函数

  1. np.any(): 至少有一个元素满足指定条件,返回True
  2. np.all(): 所有的元素满足指定条件,返回True
arr = np.random.randn(2,3)
print(arr)
print(np.any(arr > 0))
print(np.all(arr > 0))

运行结果:

[[ 0.05075769 -1.31919688 -1.80636984]
 [-1.29317016 -1.3336612  -0.19316432]]
True
False

元素去重排序函数

np.unique():找到唯一值并返回排序结果,类似于Python的set集合

arr = np.array([[1, 2, 1], [2, 3, 4]])
print(arr)
print(np.unique(arr))

运行结果:

[[1 2 1]
 [2 3 4]]
[1 2 3 4]


目录
相关文章
|
2月前
|
数据处理 Python
在数据科学领域,Pandas和NumPy是每位数据科学家和分析师的必备工具
在数据科学领域,Pandas和NumPy是每位数据科学家和分析师的必备工具。本文通过问题解答形式,深入探讨Pandas与NumPy的高级操作技巧,如复杂数据筛选、分组聚合、数组优化及协同工作,结合实战演练,助你提升数据处理能力和工作效率。
48 5
|
2月前
|
存储 数据处理 Python
Python科学计算:NumPy与SciPy的高效数据处理与分析
【10月更文挑战第27天】在科学计算和数据分析领域,Python凭借简洁的语法和强大的库支持广受欢迎。NumPy和SciPy作为Python科学计算的两大基石,提供了高效的数据处理和分析工具。NumPy的核心功能是N维数组对象(ndarray),支持高效的大型数据集操作;SciPy则在此基础上提供了线性代数、信号处理、优化和统计分析等多种科学计算工具。结合使用NumPy和SciPy,可以显著提升数据处理和分析的效率,使Python成为科学计算和数据分析的首选语言。
82 3
|
2月前
|
存储 机器学习/深度学习 算法
Python科学计算:NumPy与SciPy的高效数据处理与分析
【10月更文挑战第26天】NumPy和SciPy是Python科学计算领域的两大核心库。NumPy提供高效的多维数组对象和丰富的数学函数,而SciPy则在此基础上提供了更多高级的科学计算功能,如数值积分、优化和统计等。两者结合使Python在科学计算中具有极高的效率和广泛的应用。
94 2
|
3月前
|
机器学习/深度学习 数据采集 算法
探索Python科学计算的边界:NumPy、Pandas与SciPy在大规模数据分析中的高级应用
【10月更文挑战第5天】随着数据科学和机器学习领域的快速发展,处理大规模数据集的能力变得至关重要。Python凭借其强大的生态系统,尤其是NumPy、Pandas和SciPy等库的支持,在这个领域占据了重要地位。本文将深入探讨这些库如何帮助科学家和工程师高效地进行数据分析,并通过实际案例来展示它们的一些高级应用。
79 0
探索Python科学计算的边界:NumPy、Pandas与SciPy在大规模数据分析中的高级应用
|
3月前
|
机器学习/深度学习 算法 数据挖掘
【Python篇】深度探索NumPy(下篇):从科学计算到机器学习的高效实战技巧1
【Python篇】深度探索NumPy(下篇):从科学计算到机器学习的高效实战技巧
74 5
|
3月前
|
机器学习/深度学习 算法 数据可视化
【Python篇】深度探索NumPy(下篇):从科学计算到机器学习的高效实战技巧2
【Python篇】深度探索NumPy(下篇):从科学计算到机器学习的高效实战技巧
51 1
|
5月前
|
机器学习/深度学习 存储 算法
NumPy 与 SciPy:Python 科学计算库的比较
【8月更文挑战第30天】
221 5
|
4月前
|
数据挖掘 Python
NumPy求解微分方程:轻松掌握科学计算的利器
NumPy求解微分方程:轻松掌握科学计算的利器
86 0
|
4月前
|
机器学习/深度学习 数据处理 Python
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
122 0
|
5月前
|
机器学习/深度学习 数据处理 计算机视觉
NumPy实践宝典:Python高手教你如何轻松玩转数据处理!
【8月更文挑战第22天】NumPy是Python科学计算的核心库,专长于大型数组与矩阵运算,并提供了丰富的数学函数。首先需安装NumPy (`pip install numpy`)。之后可通过创建数组、索引与切片、执行数学与逻辑运算、变换数组形状及类型、计算统计量和进行矩阵运算等操作来实践学习。NumPy的应用范围广泛,从基础的数据处理到图像处理都能胜任,是数据科学领域的必备工具。
70 0