特别说明:由于HashMap底层的红黑树结构比较复杂,因此涉及红黑树相关的操作,我单独写博客为大家分享,文章最后会加上红黑树文章链接!
5.HashMap的成员方法
5.1 put(K key, V value)方法
put方法是比较复杂的,实现步骤大致如下:
先通过 hash 值计算出 key 映射到哪个桶;
如果桶上没有碰撞冲突,则直接插入;
如果出现碰撞冲突了,则需要处理冲突:
a 如果该桶使用红黑树处理冲突,则调用红黑树的方法插入数据;
b 否则采用传统的链式方法插入。如果链的长度达到临界值,则把链转变为红黑树;
如果桶中存在重复的键,则为该键替换新值 value;
如果 size 大于阈值 threshold,则进行扩容;
具体的方法如下:
public V put(K key, V value) { // 调用hash(key)计算出key的hash值 return putVal(hash(key), key, value, false, true); }
说明:
HashMap 只提供了 put 用于添加元素,putVal 方法只是给 put 方法调用的一个方法,并没有提供给用户使用。 所以我们重点看 putVal 方法。
我们可以看到在 putVal 方法中 key 在这里执行了一下 hash 方法,来看一下 hash 方法是如何实现的。
static final int hash(Object key) { int h; // 如果key为null,则hash值为0, // 否则调用key的hashCode()方法计算出key的哈希值然后赋值给h, // 后与h无符号右移16位后的二进制进行按位异或得到最后的hash值, // 这样做是为了使计算出的hash更分散 // 为什么要更分散呢?因为越分散,某个桶的链表长度就越短,之后生成的红黑树越少,效率越高 return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16); }
从上面可以得知 HashMap 是支持 key 为空的,而 HashTable 是直接用 Key 来获取hashCode 所以 key 为空会抛异常。
解读上述 hash 方法:
我们先研究下 key 的哈希值是如何计算出来的。key 的哈希值是通过上述方法计算出来的。
这个哈希方法首先计算出 key 的 hashCode 赋值给 h,然后与 h 无符号右移 16 位后的二进制进行按位异或得到最后的 hash 值。
在 putVal 函数中使用到了上述 hash 函数计算的哈希值:
final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) { ... if ((p = tab[i = (n - 1) & hash]) == null) // 这里的n表示数组长度16 ,公式 // (length - 1) & hash = 桶位下标 当数组长度为2的n次幂数时, // 该公式相当于:hash % length 哈希值对数组长度取余 // 例如:hash % 32 = hash & (32-1) ... }
计算过程如下所示:
说明:
key.hashCode();返回散列值也就是 hashcode,假设随便生成的一个值。
n 表示数组初始化的长度是 16。
&(按位与运算):运算规则:相同的二进制数位上,都是 1 的时候,结果为 1,否则为0。
^(按位异或运算):运算规则:相同的二进制数位上,数字相同,结果为 0,不同为 1。
后获得0101==> 下标为5的捅。
简单来说就是:
高 16bit 不变,低 16bit 和高 16bit 做了一个异或(得到的 hashCode 转化为 32 位二进制,前 16 位和后 16 位低 16bit 和高 16bit 做了一个异或)。
问题:为什么要这样操作呢?
如果当 n 即数组长度很小,假设是 16 的话,那么 n - 1 即为 1111 ,这样的值和 hashCode 直接做按位与操作,实际上只使用了哈希值的后 4 位。如果当哈希值的高位变化很大,低位变化很小,这样就很容易造成哈希冲突了,所以这里把高低位都利用起来,从而解决了这个问题。
下面,我们来看看 putVal 方法,看看它到底做了什么。
主要参数:
hash:key 的 hash 值
key:原始 key
value:要存放的值
onlyIfAbsent:如果 true 代表不更改现有的值
evict:如果为false表示 table 为创建状态
putVal 方法源代码如下所示:
public V put(K key, V value) { return putVal(hash(key), key, value, false, true); } static final int hash(Object key) { int h;// 如果key是null 则hash值为0,否则调用key的hashCode()方法,并让高16位参与整个hash异或,如果数组长度比较小的情况下,让高16位也参与寻址, // 寻址公式:(length - 1) & hash // 这样可以使计算出的结果更分散,不容易产生哈希冲突 return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16); } final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) { Node<K,V>[] tab; Node<K,V> p; int n, i; /* 1)transient Node<K,V>[] table; 表示存储Map集合中元素的数组。 2)(tab = table) == null 表示将空的table赋值给tab,然后判断tab是否等于null,第一次肯定是null。 3)(n = tab.length) == 0 表示将数组的长度0赋值给n,然后判断n是否等于0,n等于0,由于if判断使用双或,满足一个即可,则执行代码 n = (tab = resize()).length; 进行数组初始化,并将初始化好的数组长度赋值给n。 4)执行完n = (tab = resize()).length,数组tab每个空间都是null。 */ if ((tab = table) == null || (n = tab.length) == 0) n = (tab = resize()).length; /* 1)i = (n - 1) & hash 表示计算数组的索引赋值给i,即确定元素存放在哪个桶中。 2)p = tab[i = (n - 1) & hash]表示获取计算出的位置的数据赋值给结点p。 3) (p = tab[i = (n - 1) & hash]) == null 判断结点位置是否等于null,如果为null,则执行代码:tab[i] = newNode(hash, key, value, null);根据键值对创建新的结点放入该位置的桶中。 小结:如果当前桶没有哈希碰撞冲突,则直接把键值对插入空间位置。 */ if ((p = tab[i = (n - 1) & hash]) == null) // 创建一个新的结点存入到桶中 tab[i] = newNode(hash, key, value, null); else { // 执行else说明tab[i]不等于null,表示这个位置已经有值了 Node<K,V> e; K k; /* 比较桶中第一个元素(数组中的结点)的hash值和key是否相等 1)p.hash == hash :p.hash表示原来存在数据的hash值 hash表示后添加数据的hash值 比较两个hash值是否相等。 说明:p表示tab[i],即 newNode(hash, key, value, null)方法返回的Node对象。 Node<K,V> newNode(int hash, K key, V value, Node<K,V> next) { return new Node<>(hash, key, value, next); } 而在Node类中具有成员变量hash用来记录着之前数据的hash值的。 2)(k = p.key) == key :p.key获取原来数据的key赋值给k key 表示后添加数据的key比较两个key的地址值是否相等。 3)key != null && key.equals(k):能够执行到这里说明两个key的地址值不相等,那么先判断后添加的key是否等于null,如果不等于null再调用equals方法判断两个key的内容是否相等。 */ if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k)))) /* 说明:两个元素哈希值相等,并且key的值也相等, 将旧的元素整体对象赋值给e,用e来记录 */ e = p; // hash值不相等或者key不相等;判断p是否为红黑树结点 else if (p instanceof TreeNode) // 放入树中 e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value); // 说明是链表结点 else { /* 1)如果是链表的话需要遍历到最后结点然后插入 2)采用循环遍历的方式,判断链表中是否有重复的key */ for (int binCount = 0; ; ++binCount) { /* 1)e = p.next 获取p的下一个元素赋值给e。 2)(e = p.next) == null 判断p.next是否等于null,等于null,说明p没有下一个元素,那么此时到达了链表的尾部,还没有找到重复的key,则说明HashMap没有包含该键,将该键值对插入链表中。 */ if ((e = p.next) == null) { /* 1)创建一个新的结点插入到尾部 p.next = newNode(hash, key, value, null); Node<K,V> newNode(int hash, K key, V value, Node<K,V> next) { return new Node<>(hash, key, value, next); } 注意第四个参数next是null,因为当前元素插入到链表末尾了,那么下一个结点肯定是null。 2)这种添加方式也满足链表数据结构的特点,每次向后添加新的元素。 */ p.next = newNode(hash, key, value, null); /* 1)结点添加完成之后判断此时结点个数是否大于TREEIFY_THRESHOLD临界值8,如果大于则将链表转换为红黑树。 2)int binCount = 0 :表示for循环的初始化值。从0开始计数。记录着遍历结点的个数。值是0表示第一个结点,1表示第二个结点。。。。7表示第八个结点,加上数组中的的一个元素,元素个数是9。 TREEIFY_THRESHOLD - 1 --》8 - 1 ---》7 如果binCount的值是7(加上数组中的的一个元素,元素个数是9) TREEIFY_THRESHOLD - 1也是7,此时转换红黑树。 */ if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st // 转换为红黑树 treeifyBin(tab, hash); // 跳出循环 break; } /* 执行到这里说明e = p.next 不是null,不是最后一个元素。继续判断链表中结点的key值与插入的元素的key值是否相等。 */ if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) // 相等,跳出循环 /* 要添加的元素和链表中的存在的元素的key相等了,则跳出for循环。不用再继续比较了 直接执行下面的if语句去替换去 if (e != null) */ break; /* 说明新添加的元素和当前结点不相等,继续查找下一个结点。 用于遍历桶中的链表,与前面的e = p.next组合,可以遍历链表 */ p = e; } } /* 表示在桶中找到key值、hash值与插入元素相等的结点 也就是说通过上面的操作找到了重复的键,所以这里就是把该键的值变为新的值,并返回旧值 这里完成了put方法的修改功能 */ if (e != null) { // 记录e的value V oldValue = e.value; // onlyIfAbsent为false或者旧值为null if (!onlyIfAbsent || oldValue == null) // 用新值替换旧值 // e.value 表示旧值 value表示新值 e.value = value; // 访问后回调 afterNodeAccess(e); // 返回旧值 return oldValue; } } // 修改记录次数 ++modCount; // 判断实际大小是否大于threshold阈值,如果超过则扩容 if (++size > threshold) resize(); // 插入后回调 afterNodeInsertion(evict); return null; }
(1)计算key的hash值;
(2)如果桶(数组)数量为0,则初始化桶;
(3)如果key所在的桶没有元素,则直接插入;
(4)如果key所在的桶中的第一个元素的key与待插入的key相同,说明找到了元素,转后续流程(9)处理;
(5)如果第一个元素是树节点,则调用树节点的putTreeVal()寻找元素或插入树节点;
(6)如果不是以上三种情况,则遍历桶对应的链表查找key是否存在于链表中;
(7)如果找到了对应key的元素,则转后续流程(9)处理;
(8)如果没找到对应key的元素,则在链表最后插入一个新节点并判断是否需要树化;
(9)如果找到了对应key的元素,则判断是否需要替换旧值,并直接返回旧值;
(10)如果插入了元素,则数量加1并判断是否需要扩容;
5.2 扩容方法 resize()
扩容机制:
什么时候才需要扩容?
当 HashMap 中的元素个数超过数组大小(数组长度)*loadFactor(负载因子)时,就会进行数组扩容,loadFactor 的默认值是 0.75。
HashMap 的扩容是什么?
进行扩容,会伴随着一次重新 hash 分配,并且会遍历 hash 表中所有的元素,是非常耗时的。在编写程序中,要尽量避免 resize。
HashMap 在进行扩容时,使用的 rehash 方式非常巧妙,因为每次扩容都是翻倍,与原来计算的 (n - 1) & hash 的结果相比,只是多了一个 bit 位,所以结点要么就在原来的位置,要么就被分配到 “原位置 + 旧容量” 这个位置。
例如我们从 16 扩展为 32 时,具体的变化如下所示:
因此元素在重新计算 hash 之后,因为 n 变为 2 倍,那么 n - 1 的标记范围在高位多 1bit(红色),因此新的 index 就会发生这样的变化。
说明:
5 是假设计算出来的原来的索引。这样就验证了上述所描述的:扩容之后所以结点要么就在原来的位置,要么就被分配到 “原位置 + 旧容量” 这个位置。
因此,我们在扩充 HashMap 的时候,不需要重新计算 hash,只需要看看原来的 hash 值新增的那个 bit 是 1 还是 0 就可以了,是 0 的话索引没变,是 1 的话索引变成 “原位置 + 旧容量” 。可以看看下图为 16 扩充为 32 的 resize 示意图:
正是因为这样巧妙的 rehash 方式,既省去了重新计算 hash 值的时间,而且同时,由于新增的 1bit 是 0 还是 1 可以认为是随机的,在 resize 的过程中保证了 rehash 之后每个桶上的结点数一定小于等于原来桶上的结点数,保证了 rehash 之后不会出现更严重的 hash 冲突,均匀的把之前的冲突的结点分散到新的桶中了。
源码 resize 方法的解读
下面是代码的具体实现:
正是因为这样巧妙的 rehash 方式,既省去了重新计算 hash 值的时间,而且同时,由于新增的 1bit 是 0 还是 1 可以认为是随机的,在 resize 的过程中保证了 rehash 之后每个桶上的结点数一定小于等于原来桶上的结点数,保证了 rehash 之后不会出现更严重的 hash 冲突,均匀的把之前的冲突的结点分散到新的桶中了。 源码 resize 方法的解读 下面是代码的具体实现: ———————————————— 版权声明:本文为CSDN博主「兴趣使然的草帽路飞」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。 原文链接:https://blog.csdn.net/weixin_43591980/article/details/109496637
(1)如果使用是默认构造方法,则第一次插入元素时初始化为默认值,容量为16,扩容门槛为12;
(2)如果使用的是非默认构造方法,则第一次插入元素时初始化容量等于扩容门槛,扩容门槛在构造方法里等于传入容量向上最近的2的n次方;
(3)如果旧容量大于0,则新容量等于旧容量的2倍,但不超过最大容量2的30次方,新扩容门槛为旧扩容门槛的2倍;
(4)创建一个新容量的桶;
(5)搬移元素,原链表分化成两个链表,低位链表存储在原来桶的位置,高位链表搬移到原来桶的位置加旧容量的位置;
5.3 删除方法 remove()
删除方法就是首先先找到元素的位置,如果是链表就遍历链表找到元素之后删除。如果是用红黑树就遍历树然后找到之后做删除,树小于 6 的时候要转链表。
删除 remove() 方法:
// remove方法的具体实现在removeNode方法中,所以我们重点看下removeNode方法 // 根据key删除 public V remove(Object key) { Node<K,V> e; return (e = removeNode(hash(key), key, null, false, true)) == null ? null : e.value; } // 根据key,value 删除 @Override public boolean remove(Object key, Object value) { return removeNode(hash(key), key, value, true, true) != null; }
removeNode() 方法:
final Node<K,V> removeNode(int hash, Object key, Object value, boolean matchValue, boolean movable) { // 参数: // matchValue 当根据 key和value 删除的时候该参数为true // movable 可以先不用考虑这个参数 // tab:引用当前haashMap中的散列表 // p:当前node元素 // n:当前散列表数组长度 // index:表示寻址结果 Node<K,V>[] tab; Node<K,V> p; int n, index; // 根据hash找到位置 // 如果当前key映射到的桶不为空 if ((tab = table) != null && (n = tab.length) > 0 && (p = tab[index = (n - 1) & hash]) != null) { // 进入这个if判断内部,说明桶位是有数据的,需要进行查询操作,并且执行删除 // node:通过查找得到的要删除的元素 // e:表示当前node的下一个元素 // k,v 键 值 Node<K,V> node = null, e; K k; V v; // 第一种情况:当前桶位中的元素 即为我们要删除的元素 // 如果桶上的结点就是要找的key,则将node指向该结点 if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k)))) node = p; // 如果桶位中的头一个元素不是我们要找的元素,且桶位中的e = p.next不为null // 说明该桶位中的节点存在下一个节点 else if ((e = p.next) != null) { // 说明:当前桶位,要么是 链表,要么是 红黑树 // 第二种情况:判断桶位中是否已经形成了红黑树 if (p instanceof TreeNode) // 说明是以红黑树来处理的冲突,则获取红黑树要删除的结点 node = ((TreeNode<K,V>)p).getTreeNode(hash, key); // 第三种情况:桶位中已经形成链表 else { // 判断是否以链表方式处理hash冲突 // 是的话则通过遍历链表来寻找要删除的结点 do { if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) { node = e; break; } p = e; } while ((e = e.next) != null); } } // 比较找到的key的value和要删除的是否匹配 if (node != null && (!matchValue || (v = node.value) == value || (value != null && value.equals(v)))) { // 第一种情况:如果桶位中是红黑树,通过调用红黑树的方法来删除结点 if (node instanceof TreeNode) ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable); // 第二种情况:如果桶位中是链表 else if (node == p) // 链表删除 tab[index] = node.next; // 如果桶位中 else // 第三种情况:将当前元素p的下一个元素设置为 要删除元素的 下一个元素 p.next = node.next; // 记录修改次数 ++modCount; // 变动的数量 --size; afterNodeRemoval(node); return node; } } return null; }
5.4 查找元素方法 get()
查找方法,通过元素的 key 找到 value。
代码如下:
public V get(Object key) { Node<K,V> e; return (e = getNode(hash(key), key)) == null ? null : e.value; }
get 方法主要调用的是 getNode 方法,代码如下:
final Node<K,V> getNode(int hash, Object key) { // tab:引用当前hashMap的散列表 // first:桶位中的头元素 // e:临时node元素 // n:table数组的长度 Node<K,V>[] tab; Node<K,V> first, e; int n; K k; // 如果哈希表不为空,并且key对应的桶不为空 if ((tab = table) != null && (n = tab.length) > 0 && (first = tab[(n - 1) & hash]) != null) { /* 判断数组元素是否相等 根据索引的位置检查第一个元素 注意:总是检查第一个元素 */ // 第一种情况:定位出来的桶位元素 就是我们要get的数据 if (first.hash == hash && // always check first node ((k = first.key) == key || (key != null && key.equals(k)))) return first; // 桶位第一个元素不是我们要找的目标元素,且first.next不为null // 说明当前桶位不止一个元素,可能是链表,也可能是红黑树 if ((e = first.next) != null) { // 第二种情况:桶位已经升级成了红黑树 // 判断是否是红黑树,是的话调用红黑树中的getTreeNode方法获取结点 if (first instanceof TreeNode) // 调用与树相关的方法得到目标元素 return ((TreeNode<K,V>)first).getTreeNode(hash, key); // 第三种情况:桶位已经形成链表 do { // 不是红黑树的话,那就是链表结构了 // 通过循环的方法判断链表中是否存在该key if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) return e; } while ((e = e.next) != null); } } // 如果没找到返回null return null; }
小结:
get 方法实现的步骤:
a. 通过 hash 值获取该 key 映射到的桶
b. 桶上的 key 就是要查找的 key,则直接找到并返回
c. 桶上的 key 不是要找的 key,则查看后续的结点:
如果后续结点是红黑树结点,通过调用红黑树的方法根据 key 获取 value
如果后续结点是链表结点,则通过循环遍历链表根据 key 获取 value
6. 遍历HashMap的几种方式
分别遍历 Key 和 Values
for (String key : map.keySet()) { System.out.println(key); } for (Object vlaue : map.values() { System.out.println(value); }
使用 Iterator 迭代器迭代
Iterator<Map.Entry<String, Object>> iterator = map.entrySet().iterator(); while (iterator.hasNext()) { Map.Entry<String, Object> mapEntry = iterator.next(); System.out.println(mapEntry.getKey() + "---" + mapEntry.getValue()); }
通过 get 方式(不建议使用)
Set<String> keySet = map.keySet(); for (String str : keySet) { System.out.println(str + "---" + map.get(str)); }
说明:
根据阿里开发手册,不建议使用这种方式,因为迭代两次。keySet 获取 Iterator一次,还有通过 get 又迭代一次,降低性能。
- jdk8 以后使用 Map 接口中的默认方法:
default void forEach(BiConsumer<? super K,? super V> action) // BiConsumer接口中的方法: void accept(T t, U u) 对给定的参数执行此操作。 参数 t - 第一个输入参数 u - 第二个输入参数
遍历代码:
HashMap<String,String> map = new HashMap(); map.put("001", "zhangsan"); map.put("002", "lisi"); map.forEach((key, value) -> { System.out.println(key + "---" + value); });
7.总结
(1)HashMap是一种散列表,采用(数组 + 链表 + 红黑树)的存储结构;
(2)HashMap的默认初始容量为16(1<<4),默认装载因子为0.75f,容量总是2的n次方;
(3)HashMap扩容时每次容量变为原来的两倍;
(4)当桶的数量小于64时不会进行树化,只会扩容;
(5)当桶的数量大于64且单个桶中元素的数量大于8时,进行树化;
(6)当单个桶中元素数量小于6时,进行反树化;
(7)HashMap是非线程安全的容器;
(8)HashMap查找添加元素的时间复杂度都为O(1);
关于HashMap红黑树操作,相关知识,之后很快就会更新…