程序员学数据科学需要掌握的常用算法和方法术语

简介:   数据科学是一门有关机器学习、统计学与数据挖掘的交叉学科,它的目标是通过算法和统计分析方法从现存数据中获取新知识。下面小编将介绍数据科学中的算法和方法术语。  k最近邻算法:一种预测未知数据项的算法,未知数据项(的值)近似于其k个最近邻居的多数值。朴素贝叶斯分类器:使用关于条件概率的贝叶斯定理,即P(A|B)=(P(B|A) * P(A))/P(B),来分类数据项的一种方法,假设数据的特定变量之间相互独立。决策树:一种模型,根据树上的分支与实际数据项之间的匹配属性,将数据项分类到叶子节点中的一个类中。随机决策树:决策树的一种,其中的每个分支在构建时仅使用可用变量的随机子集。随机森林:基

  数据科学是一门有关机器学习、统计学与数据挖掘的交叉学科,它的目标是通过算法和统计分析方法从现存数据中获取新知识。下面小编将介绍数据科学中的算法和方法术语。

  k最近邻算法:一种预测未知数据项的算法,未知数据项(的值)近似于其k个最近邻居的多数值。朴素贝叶斯分类器:使用关于条件概率的贝叶斯定理,即P(A|B)=(P(B|A) P(A))/P(B),来分类数据项的一种方法,假设数据的特定变量之间相互独立。决策树:一种模型,根据树上的分支与实际数据项之间的匹配属性,将数据项分类到叶子节点中的一个类中。随机决策树:决策树的一种,其中的每个分支在构建时仅使用可用变量的随机子集。随机森林:基于有放回抽取的数据随机子集构建的随机决策树集合,数据项被归类给这些树投票最多的类。k-means算法:一种聚类算法,将数据集划分为k个组,组内的每个成员尽可能地相似,也就是说,每个成员距离彼此最近。回归分析:一种预测函数模型中未知参数的方法,根据输入变量预测输出变量,例如预测线性模型y=a x + b中的a和b。时间序列分析:对依赖于时间的数据的分析,主要包括趋势分析和季节性分析。支持向量机(SVM):一种分类算法,用于寻找将训练数据分成特定类别的超平面,然后用超平面划分从而对数据进行进一步分类。主成分分析(PCA):对给定数据的各个组成部分进行预处理,以达到更高的准确率,例如,二手手机购买平台根据输入向量对最终结果的影响程度,对输入向量中的变量进行重新缩放。文本挖掘:对文本的搜索和提取,以及用于数据分析的数值型数据的转换。神经网络:一种机器学习算法,由简单分类器网络组成,根据输入数据或网络中其他分类器的结果作出决策。深度学习:神经网络提升其学习过程的能力。Apriori关联规则:可以在训练数据中观察到的规则,并且根据这个规则对未来数据进行分类。PageRank:一种搜索算法,在给定搜索关键字的情况下,从最相关的搜索结果中搜索那些具有最大入链数的结果,它为这些结果赋予最大的相关性。在数学术语中,网页排名计算出了代表这些相关度量的某个特征向量。集成学习:一种使用不同的学习算法得到最终结论的学习方法。装袋法:一种分类数据项的方法。分类器在训练数据的随机子集上进行训练,然后根据这些分类器投票表决的结果来分类数据。遗传算法:受遗传过程启发的机器学习算法,例如,对有着更高精度的分类器的进化过程进一步进行训练。归纳推理:学习生成实际数据的规则的机器学习方法。贝叶斯网络:表示随机变量及其条件依赖关系的图模型。奇异值分解:一种矩阵分解,也是特征分解的一种推广,用于最小二乘法。提升算法:一种机器学习的元算法,基于分类器集合作出预测来降低预测中的方差。期望最大化:用于搜索能最大化模型预测准确率的模型参数的迭代方法。

目录
相关文章
|
2月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
141 4
|
3月前
|
存储 算法 Java
解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用
在Java中,Set接口以其独特的“无重复”特性脱颖而出。本文通过解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用。
65 3
|
4天前
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
45 13
机器学习算法的优化与改进:提升模型性能的策略与方法
|
2月前
|
存储 算法 安全
SnowflakeIdGenerator-雪花算法id生成方法
SnowflakeIdGenerator-雪花算法id生成方法
28 1
|
2月前
|
JSON 算法 数据挖掘
基于图论算法有向图PageRank与无向图Louvain算法构建指令的方式方法 用于支撑qwen agent中的统计相关组件
利用图序列进行数据解读,主要包括节点序列分析、边序列分析以及结合节点和边序列的综合分析。节点序列分析涉及节点度分析(如入度、出度、度中心性)、节点属性分析(如品牌、价格等属性的分布与聚类)、节点标签分析(如不同标签的分布及标签间的关联)。边序列分析则关注边的权重分析(如关联强度)、边的类型分析(如管理、协作等关系)及路径分析(如最短路径计算)。结合节点和边序列的分析,如子图挖掘和图的动态分析,可以帮助深入理解图的结构和功能。例如,通过子图挖掘可以发现具有特定结构的子图,而图的动态分析则能揭示图随时间的变化趋势。这些分析方法结合使用,能够从多个角度全面解读图谱数据,为决策提供有力支持。
111 0
|
3月前
|
算法 索引
HashMap扩容时的rehash方法中(e.hash & oldCap) == 0算法推导
HashMap在扩容时,会创建一个新数组,并将旧数组中的数据迁移过去。通过(e.hash & oldCap)是否等于0,数据被巧妙地分为两类:一类保持原有索引位置,另一类索引位置增加旧数组长度。此过程确保了数据均匀分布,提高了查询效率。
57 2
|
3月前
|
搜索推荐 Shell
解析排序算法:十大排序方法的工作原理与性能比较
解析排序算法:十大排序方法的工作原理与性能比较
101 9
|
3月前
|
存储 算法 Java
数据结构与算法学习八:前缀(波兰)表达式、中缀表达式、后缀(逆波兰)表达式的学习,中缀转后缀的两个方法,逆波兰计算器的实现
前缀(波兰)表达式、中缀表达式和后缀(逆波兰)表达式的基本概念、计算机求值方法,以及如何将中缀表达式转换为后缀表达式,并提供了相应的Java代码实现和测试结果。
171 0
数据结构与算法学习八:前缀(波兰)表达式、中缀表达式、后缀(逆波兰)表达式的学习,中缀转后缀的两个方法,逆波兰计算器的实现
|
3月前
|
机器学习/深度学习 人工智能 开发框架
【AI系统】AI 学习方法与算法现状
在人工智能的历史长河中,我们见证了从规则驱动系统到现代机器学习模型的转变。AI的学习方法基于深度神经网络,通过前向传播、反向传播和梯度更新不断优化权重,实现从训练到推理的过程。当前,AI算法如CNN、RNN、GNN和GAN等在各自领域取得突破,推动技术进步的同时也带来了更大的挑战,要求算法工程师与系统设计师紧密合作,共同拓展AI技术的边界。
147 1
|
3月前
|
负载均衡 监控 算法
每个程序员都应该知道的 6 种负载均衡算法
每个程序员都应该知道的 6 种负载均衡算法
308 2

热门文章

最新文章