Python数据分析与展示:DataFrame类型索引操作-10

简介: Python数据分析与展示:DataFrame类型索引操作-10

DataFrame对象操作

重新索引

.reindex()能够改变或重排Series和DataFrame索引

.reindex(index=None, columns=None,…)的参数

参数

说明

index, columns

新的行列自定义索引

fill_value

重新索引中,用于填充缺失位置的值

method

填充方法, ffill当前值向前填充,bfill向后填充

limit

最大大填充量

copy

默认True,生成新的对象,False时,新旧相等不复制

索引类型

Series和DataFrame的索引是Index类型

Index对象是不可修改类型

索引类型常用方法

方法

说明

.append(idx)

连接另一个Index对象,产生新的Index对象

.diff(idx)

计算差集,产生新的Index对象

.intersection(idx)

计算交集

.union(idx)

计算并集

.delete(loc)

删除loc位置处的元素

.insert(loc,e)

在loc位置增加一个元素e

.drop()能够删除Series和DataFrame指定行或列索引

代码示例

# -*- coding: utf-8 -*-
# @File    : dataframe_demo2.py
# @Date    : 2018-05-20
# DataFrame对象操作
from pandas import DataFrame
dt = {
    "城市": ["北京", "上海", "南京", "天津"],
    "人口": [200, 20, 30, 40],
    "收入": [10, 20, 40, 50]
}
df = DataFrame(dt, index=["c1", "c2", "c3", "c4"])
print(df)
"""
    城市   人口  收入
c1  北京  200  10
c2  上海   20  20
c3  南京   30  40
c4  天津   40  50
"""
# 重新索引行,排序
df2 = df.reindex(index=["c4", "c3", "c2", "c1"])
print(df2)
"""
    城市   人口  收入
c4  天津   40  50
c3  南京   30  40
c2  上海   20  20
c1  北京  200  10
"""
# 重新索引列,排序
df3 = df.reindex(columns=["城市", "收入", "人口"])
print(df3)
"""
    城市  收入   人口
c1  北京  10  200
c2  上海  20   20
c3  南京  40   30
c4  天津  50   40
"""
# 插入列索引
col = df.columns.insert(3, "新增")
print(col)
"""
Index(['城市', '人口', '收入', '新增'], dtype='object')
"""
# 增加数据,默认填充200
df4 = df.reindex(columns=col, fill_value=200)
print(df4)
"""
    城市   人口  收入   新增
c1  北京  200  10  200
c2  上海   20  20  200
c3  南京   30  40  200
c4  天津   40  50  200
"""
# 删除插入索引
nc = df.columns.delete(2)
ni = df.index.insert(5, "c0")
df5 = df.reindex(index=ni, columns=nc)
print(df5)
"""
     城市     人口
c1   北京  200.0
c2   上海   20.0
c3   南京   30.0
c4   天津   40.0
c0  NaN    NaN
"""
# DataFrame删除行
df6 = df5.drop("c1")
print(df6)
"""
     城市    人口
c2   上海  20.0
c3   南京  30.0
c4   天津  40.0
c0  NaN   NaN
"""
# DataFrame删除列
df7 = df6.drop("人口", axis=1)
print(df7)
"""
     城市
c2   上海
c3   南京
c4   天津
c0  NaN
"""


相关文章
|
1月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析的入门指南
本文将引导读者了解如何使用Python进行数据分析,从安装必要的库到执行基础的数据操作和可视化。通过本文的学习,你将能够开始自己的数据分析之旅,并掌握如何利用Python来揭示数据背后的故事。
|
2月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析的入门指南
【10月更文挑战第42天】本文是一篇技术性文章,旨在为初学者提供一份关于如何使用Python进行数据分析的入门指南。我们将从安装必要的工具开始,然后逐步介绍如何导入数据、处理数据、进行数据可视化以及建立预测模型。本文的目标是帮助读者理解数据分析的基本步骤和方法,并通过实际的代码示例来加深理解。
73 3
|
2月前
|
机器学习/深度学习 算法 数据挖掘
数据分析的 10 个最佳 Python 库
数据分析的 10 个最佳 Python 库
104 4
数据分析的 10 个最佳 Python 库
|
28天前
|
数据可视化 Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
通过这些思维导图和分析说明表,您可以更直观地理解和选择适合的数据可视化图表类型,帮助更有效地展示和分析数据。
66 8
|
2月前
|
存储 数据可视化 数据挖掘
使用Python进行数据分析和可视化
本文将引导你理解如何使用Python进行数据分析和可视化。我们将从基础的数据结构开始,逐步深入到数据处理和分析的方法,最后通过实际的代码示例来展示如何创建直观的数据可视化。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的见解和技巧。让我们一起探索数据的世界,发现隐藏在数字背后的故事!
|
2月前
|
存储 数据可视化 数据挖掘
Python数据分析项目:抖音短视频达人粉丝增长趋势
Python数据分析项目:抖音短视频达人粉丝增长趋势
|
2月前
|
数据采集 存储 数据可视化
Python数据分析:揭秘"黑神话:悟空"Steam用户评论趋势
Python数据分析:揭秘"黑神话:悟空"Steam用户评论趋势
|
2月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析和可视化
【10月更文挑战第42天】本文将介绍如何使用Python进行数据分析和可视化。我们将从数据导入、清洗、探索性分析、建模预测,以及结果的可视化展示等方面展开讲解。通过这篇文章,你将了解到Python在数据处理和分析中的强大功能,以及如何利用这些工具来提升你的工作效率。
|
2月前
|
数据采集 数据可视化 数据挖掘
深入浅出:使用Python进行数据分析的基础教程
【10月更文挑战第41天】本文旨在为初学者提供一个关于如何使用Python语言进行数据分析的入门指南。我们将通过实际案例,了解数据处理的基本步骤,包括数据的导入、清洗、处理、分析和可视化。文章将用浅显易懂的语言,带领读者一步步掌握数据分析师的基本功,并在文末附上完整的代码示例供参考和实践。
|
2月前
|
数据采集 数据可视化 数据挖掘
掌握Python数据分析,解锁数据驱动的决策能力
掌握Python数据分析,解锁数据驱动的决策能力