提升 RTC 音频体验 - 从搞懂硬件开始

简介: 本文字数:2143 字 阅读完需:约 7 分钟

前言

RTC(实时音视频通信)技术的快速发展,助力了直播、短视频等互动娱乐形式的普及;在全球疫情持续蔓延的态势下,云会议需求呈现爆发式增长,进一步推动了 RTC 行业的快速发展。为了给客户提供稳定可靠的服务,网络系统方面需要不断提升频道连通率,降低会议过程中的断流率,增强抗弱网能力;视频方面需要提升视频清晰度,降低视频卡顿率等,音频方面在追求端到端 MOS 的同时,也要重点关注音频 3A 算法的效果,这些都是各厂家必须修炼的 “内功”,也是最终沉淀下来的核心竞争力。本文将重点阐述硬件设备采集的音频质量对 RTC 端到端音频体验的重要性。

采集质量不佳,会有什么影响?

在 RTC 架构中,端到端的音频信号处理流程大致如下图,上行分别经过了音频信号的采集,音频 3A(AEC: 回声消除、ANS: 自适应降噪和 AGC: 自动增益控制)和编码;下行分别经过丢包恢复,解码,混音和播放。

image.png
端到端的音频信号处理流程

不难看出,音频信号经过模数转换,再经过设备集成的音频信号处理芯片,最后才传递给 RTC SDK。由于硬件厂商的不同,音频采集解决方案参差不齐,因此采集到的音频质量的好坏直接影响着 3A 算法拿到的生产资料的可用性,同时也决定这最终用户接收到音频信号质量的上限。根据实际工作中遇到的音频问题,因为设备采集引起的问题基本可以归纳为如下几类:

image.png

举几个例子:

(1)采集异常

采集异常主要体现在频谱 “模糊”,严重的会导致无法听懂语义,影响正常交流。如下语谱图。
image.png

另外,采集异常后,播放的信号被麦克风采集后也会表现出异常,从而引起严重的非线性失真,影响回声消除效果,如下图。
image.png

(2) 采集抖动

常见的就是采集丢数据,听感上会听到有很多高频噪点(下图为上图中噪点放大后的局部图),严重的会影响 AEC 算法中对延时估计准确性和远近端非因果问题,严重的会导致漏回声。
image.png

image.png

(3)爆音和音量小问题

采集爆音问题主要发生在 PC,也是 PC 端设备最应该避免的问题,影响较大,除了截顶导致的频谱失真之外,严重的非线性失真会影响回声消除效果。爆音问题需要 AGC 算法通过自适应调节 PC 端模拟增益以及麦克风加强解决。
image.png

(4)频谱缺失

频谱缺失主要是硬件回调的音频采样率与实际的频谱分布不一致,即使编码器给到很高的编码码率,听感上也没有高音质的效果,如下图,采集信号采样率为 48kHz,但是频谱上限却只有 8k。
image.png

改善采集音质,硬件层面我们能做什么?

具备 RTC 能力的硬件设备早已渗透我们生活的方方面面,常见的如移动端手机和 PC,现在甚至连儿童电话手表,天猫精灵以及各种高端的指纹密码锁等设备都支持了 RTC。然而,设备的多样性直接决定这采集能力的差异性,抛开声学元器件设计差异这一因素,就 Android 端而言,芯片和软件系统的差异使得同一品牌的手机,也没办法用同一种配置适配所有型号的手机。

另外,现在绝大多数的移动端设备都自带硬件音频信号处理(后称硬件 3A)能力,不同芯片效果方面也是千差万别的同时,更严重的是经过硬件处理的音频信号频谱往往会有缺失,如开启硬件 3A 后回调到 RTC SDK 的音频信号频谱上限仅支持到 8k,相当于 16kHz 采样的音频信号,尤其在娱乐方面根本无法满足我们对高音质的追求。因此,做好硬件层的适配工作,是保障 RTC 高质量音频体验的基础。

Android 端

(1)需要搞清楚 javaaudioclass 和 opensles 这两种模式的差异,以及各自需要适配的参数,掌握关闭硬件 3A 的配置。

(2)采集抖动或音频音量异常,可以试试更改请求的采样率,通常设置的 48k 采样不会适用于所有的 android 设备。

Windows 端

(1)当前很多 Windows 设备会在屏幕顶端内置麦克风阵列,提供音频增强功能,开启方式如下图。这个功能默认屏幕正前方夹角区域为拾音区域,通过麦克风阵列技术可以有效的增强拾音区域内发言人语音,“隔离” 拾音区域以外的 “噪声”,其主要的弊端就在于开启此功能后仅支持 8k 频谱,且各厂家增强算法存在差异,效果也参差不齐。因此,软件需要具备能够 bypass 硬件自带音频增强功能的能力,为高音质做保障。

image.png
Windows 设备自带的双麦阵列(图片来源于网络)

image.png
音频设置中的增强功能开关

image.png
开启音频增强后,带来的频谱缺失

(2)音量方面,PC 端设备都支持模拟增益调节,大多数带有阵列的 Windows 设备都有额外的麦克风加强(如下图)。软件算法层面(3A 中的 AGC)需要具备自适应调节他们的能力,保障音频采集音量的平稳以控制采集底噪水平。初值设置或自适应调节不当都会导致音量小和爆音等问题,严重的会影响回声消除和降噪的效果,带来影响可用性的风险。

image.png
模拟增益与麦克风加强

苹果设备

(1)ios 端适配工作较少,需要熟悉关闭硬件 3A 的配置,因为 ios 设备自带的硬件 3A 频谱也只能支持到 10k-12k。

(2)Mac 笔记本设备比较简单,仅提供了模拟增益调节。但是有一点需要注意,RTC 在支持双声道播放时,由于麦克风会与某个扬声器在同一侧,导致播放音频时附近的麦克风采集爆音问题,一般只能优化软件 AEC 算法解决。

总结

当 48k 高音质成了刚需,为了保障采集环节的高质量,一方面需要投入时间去掌握 Android 参数适配的规律,同时市面上出现的越来越多的定制化的 android 设备(手表,智能音箱等),也必不可少的需要先确定好配置参数;另一方面关闭硬件设备自带的音频处理功能,启用 RTC 自带的纯软 3A 算法也是一种趋势,前提是要优化好软件 3A 算法整体效果以及控制好功耗,这也是客户评测各厂家之间音频体验的必测项,也是各厂家的核心竞争力之一。


扫码入群和作者一起探讨音视频技术
获取更多视频云行业最新信息👇

image.png

「视频云技术」你最值得关注的音视频技术公众号,每周推送来自阿里云一线的实践技术文章,在这里与音视频领域一流工程师交流切磋。公众号后台回复【技术】可加入阿里云视频云产品技术交流群,和业内大咖一起探讨音视频技术,获取更多行业最新信息。
相关文章
|
数据可视化 物联网 Swift
谷歌发布开源LLM Gemma,魔搭社区评测+最佳实践教程来啦!
Gemma是由Google推出的一系列轻量级、先进的开源模型,他们是基于 Google Gemini 模型的研究和技术而构建。
|
Web App开发 编解码 安全
【WebRTC 入门教程】全面解析WebRTC:从底层原理到Qt和FFmpeg的集成应用
【WebRTC 入门教程】全面解析WebRTC:从底层原理到Qt和FFmpeg的集成应用
5573 2
|
人工智能 算法 数据挖掘
【技术揭秘】解锁声纹技术中的说话人日志
说话人日志(speaker diarization)也叫说话人分离,它是从一个连续的多人说话的语音中切分出不同说话人的片段,并且判断出每个片段是哪个说话人的过程。借助说话人日志技术可以完成对音频数据流的结构化管理,具有广泛的应用价值,例如可以利用分离结果进行说话人自适应,以提高语音识别的准确率;可以辅助会议、电话数据进行自动转写构建说话人的音频档案;也可以利用说话人分离技术,实现语料库的自动跟踪和标注。
【技术揭秘】解锁声纹技术中的说话人日志
|
7月前
|
消息中间件 Linux
Linux中的System V通信标准--共享内存、消息队列以及信号量
希望本文能帮助您更好地理解和应用System V IPC机制,构建高效的Linux应用程序。
254 48
|
存储 传感器 缓存
Nvidia Isaac Sim安装与配置 入门教程 2024(2)
本文是Nvidia Isaac Sim安装与配置的入门教程,指导用户如何检查系统配置、安装Omniverse环境、配置Nucleus服务器、安装Isaac Sim软件包、设置命令行环境和编辑器环境,以及如何启动Isaac Sim仿真和加载机器人与环境。
3763 0
|
Web App开发 编解码 算法
浅谈语音质量保障:如何测试 RTC 中的音频质量?
日常音视频开会中我们或多或少会遭遇这些场景:“喂喂喂,可以听到我说话吗?我听你的声音断断续续的”,“咦,我怎么可以听到回声?”,“太吵啦,我听不清楚你在说啥” 等等。这些语音质量问题影响音视频开会体验,如若是重要的会议,那足够让人 “恼羞成怒”。那么如何有效的减少这些问题发生呢?本系列文章就将为大家分享阿里云视频云在保障 RTC 语音质量方面的测试经验。
浅谈语音质量保障:如何测试 RTC 中的音频质量?
|
Web App开发 编解码 网络协议
WebRTC SDP 详解和剖析
WebRTC 技术体系中,SDP 是看起来简单却坑非常多的点,就像直播中的时间戳几乎占据了 80% 的问题,SDP 也是问题频发的点。这篇文章详细分享了 SDP 的关键点,容易出问题的点,是非常实用的满满的干货。
WebRTC SDP 详解和剖析
|
安全 Java Shell
Android11以上 Audio音频调试方法
Android11以上 Audio音频调试方法
1505 0
|
存储 算法 前端开发
深入理解FFmpeg音视频编程:处理封装、解码、播放 队列与回放策略
深入理解FFmpeg音视频编程:处理封装、解码、播放 队列与回放策略
635 0
|
存储 编解码 vr&ar
色彩空间与像素格式
颜色是不同波长的光对人眼刺激产生的色彩感觉。色彩空间(Color Space)是颜色的数学表示,根据不同的表示方法分为不同的色彩模型。最常用的色彩模型有三类:RGB(用于计算机图形学), YUV(用于视频系统), CMYK(用于彩色印刷)。后文对色彩空间与色彩模型的叫法不作区分。本文仅讨论视频图像处理领域常用的 RGB 色彩空间和 YUV 色彩空间。
3139 0
色彩空间与像素格式