MySQL 8.0窗口函数优化SQL一例

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介: MySQL 8.0窗口函数优化SQL一例

1. 问题描述

最近在折腾把所有mysql slow query log写入到数据库中,再集中展示,向业务部门开放,也方便业务部门的同学自行查看并优化各自业务内的慢SQL。增加了定期生成报表的功能,统计最近1~2周内的慢查询数量变化情况,给业务方同学更直观的数据对比,了解最近这段时间的慢查询数量变化情况,是多了还是少了。于是有了下面这一坨SQL:

select hostname_max , db_max, sum(ts_cnt) as 1W
(select ifnull(sum(t1.ts_cnt),0) as ts_cnt from global_query_review_history t1 where 
t1.hostname_max=t2.hostname_max and t1.ts_min>= date_sub(now(), interval 14 day) and 
t1.ts_max<= date_sub(now(), interval 7 day)) AS 2W 
from global_query_review_history t2 where 
ts_min>= date_sub(now(), interval 7 day) 
group by hostname_max, db_max 
order by 1W desc limit 20;

当前 global_query_review_history 表约有2.5万条记录,这条SQL耗时 1.16秒,显然太慢了。下面是SQL执行计划:

*************************** 1. row ***************************
           id: 1
  select_type: PRIMARY
        table: t2
   partitions: NULL
         type: ALL
possible_keys: ts_min
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 25198
     filtered: 41.09
        Extra: Using where; Using temporary; Using filesort
*************************** 2. row ***************************
           id: 2
  select_type: DEPENDENT SUBQUERY
        table: t1
   partitions: NULL
         type: ref
possible_keys: hostname_max,ts_min
          key: hostname_max
      key_len: 258
          ref: func
         rows: 20
     filtered: 14.90
        Extra: Using where

可以看到需要进行一次子查询(无法自动优化成JOIN)。

SQL执行后的status统计值:

+-----------------------+--------+
| Variable_name         | Value  |
+-----------------------+--------+
| Handler_read_first    | 0      |
| Handler_read_key      | 17328  |
| Handler_read_last     | 0      |
| Handler_read_next     | 809121 |
| Handler_read_prev     | 0      |
| Handler_read_rnd      | 0      |
| Handler_read_rnd_next | 25380  |
+-----------------------+--------+

可以看到除了有全表扫描外,还要根据索引的多次逐行扫描(Handler_read_next = 809121,子查询引起的)。

2. SQL优化

上面的SQL主要瓶颈在于嵌套子查询,去掉子查询,即便是全表扫描也还是很快的。

[root@yejr.run]> select ...
...
20 rows in set (0.08 sec)
[root@yejr.run]> show status like 'handler%read%';
+-----------------------+-------+
| Variable_name         | Value |
+-----------------------+-------+
| Handler_read_first    | 0     |
| Handler_read_key      | 16910 |
| Handler_read_last     | 0     |
| Handler_read_next     | 0     |
| Handler_read_prev     | 0     |
| Handler_read_rnd      | 0     |
| Handler_read_rnd_next | 25380 |
+-----------------------+-------+

SQL优化有困难自然先想到了松华老师,在得知我用的MySQL 8.0之后,他帮忙给改造成了基于窗口函数的写法:

select hostname_max , db_max,
sum( case when ts_min>= date_sub(now(), interval 7 day)  then ts_cnt end ) as 1W,
ifnull(sum(case when  ts_min>= date_sub(now(), interval 14 day)
   and ts_max<= date_sub(now(), interval 7 day) then ts_cnt end ) over(partition by hostname_max),0) 2W
from global_query_review_history t2
 where ts_min>= date_sub(now(), interval 14 day)
group by hostname_max, db_max
order by 1W desc limit 20;

再看下执行计划:

*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: t2
   partitions: NULL
         type: ALL
possible_keys: ts_min
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 25198
     filtered: 44.88
        Extra: Using where; Using temporary; Using filesort

新SQL比较取巧,只需要读取一次数据,利用窗口函数直接计算出需要的统计值。虽然有可用索引,但因为要扫描的数据量比较大,所以最后还是变成全表扫描。新SQL耗时和status统计值见下:

20 rows in set (0.08 sec)
[root@yejr.run]> show status like 'handler%read%';
+-----------------------+-------+
| Variable_name         | Value |
+-----------------------+-------+
| Handler_read_first    | 0     |
| Handler_read_key      | 24396 |
| Handler_read_last     | 0     |
| Handler_read_next     | 0     |
| Handler_read_prev     | 0     |
| Handler_read_rnd      | 886   |
| Handler_read_rnd_next | 26703 |
+-----------------------+-------+

和之前那个SQL差距太大了,优化效果杠杠滴。

全文完。

Enjoy MySQL 8.0 :)

相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
10天前
|
SQL 关系型数据库 MySQL
深入解析MySQL的EXPLAIN:指标详解与索引优化
MySQL 中的 `EXPLAIN` 语句用于分析和优化 SQL 查询,帮助你了解查询优化器的执行计划。本文详细介绍了 `EXPLAIN` 输出的各项指标,如 `id`、`select_type`、`table`、`type`、`key` 等,并提供了如何利用这些指标优化索引结构和 SQL 语句的具体方法。通过实战案例,展示了如何通过创建合适索引和调整查询语句来提升查询性能。
91 9
|
3天前
|
SQL 存储 关系型数据库
【MySQL基础篇】全面学习总结SQL语法、DataGrip安装教程
本文详细介绍了MySQL中的SQL语法,包括数据定义(DDL)、数据操作(DML)、数据查询(DQL)和数据控制(DCL)四个主要部分。内容涵盖了创建、修改和删除数据库、表以及表字段的操作,以及通过图形化工具DataGrip进行数据库管理和查询。此外,还讲解了数据的增、删、改、查操作,以及查询语句的条件、聚合函数、分组、排序和分页等知识点。
【MySQL基础篇】全面学习总结SQL语法、DataGrip安装教程
|
8天前
|
SQL Oracle 数据库
使用访问指导(SQL Access Advisor)优化数据库业务负载
本文介绍了Oracle的SQL访问指导(SQL Access Advisor)的应用场景及其使用方法。访问指导通过分析给定的工作负载,提供索引、物化视图和分区等方面的优化建议,帮助DBA提升数据库性能。具体步骤包括创建访问指导任务、创建工作负载、连接工作负载至访问指导、设置任务参数、运行访问指导、查看和应用优化建议。访问指导不仅针对单条SQL语句,还能综合考虑多条SQL语句的优化效果,为DBA提供全面的决策支持。
31 11
|
14天前
|
缓存 关系型数据库 MySQL
MySQL 索引优化以及慢查询优化
通过本文的介绍,希望您能够深入理解MySQL索引优化和慢查询优化的方法,并在实际应用中灵活运用这些技术,提升数据库的整体性能。
56 18
|
10天前
|
SQL 关系型数据库 MySQL
MySQL 窗口函数详解:分析性查询的强大工具
MySQL 窗口函数从 8.0 版本开始支持,提供了一种灵活的方式处理 SQL 查询中的数据。无需分组即可对行集进行分析,常用于计算排名、累计和、移动平均值等。基本语法包括 `function_name([arguments]) OVER ([PARTITION BY columns] [ORDER BY columns] [frame_clause])`,常见函数有 `ROW_NUMBER()`, `RANK()`, `DENSE_RANK()`, `SUM()`, `AVG()` 等。窗口框架定义了计算聚合值时应包含的行。适用于复杂数据操作和分析报告。
51 11
|
13天前
|
缓存 关系型数据库 MySQL
MySQL 索引优化以及慢查询优化
通过本文的介绍,希望您能够深入理解MySQL索引优化和慢查询优化的方法,并在实际应用中灵活运用这些技术,提升数据库的整体性能。
19 7
|
12天前
|
缓存 关系型数据库 MySQL
MySQL 索引优化与慢查询优化:原理与实践
通过本文的介绍,希望您能够深入理解MySQL索引优化与慢查询优化的原理和实践方法,并在实际项目中灵活运用这些技术,提升数据库的整体性能。
45 5
|
21天前
|
SQL 存储 缓存
MySQL进阶突击系列(02)一条更新SQL执行过程 | 讲透undoLog、redoLog、binLog日志三宝
本文详细介绍了MySQL中update SQL执行过程涉及的undoLog、redoLog和binLog三种日志的作用及其工作原理,包括它们如何确保数据的一致性和完整性,以及在事务提交过程中各自的角色。同时,文章还探讨了这些日志在故障恢复中的重要性,强调了合理配置相关参数对于提高系统稳定性的必要性。
|
19天前
|
SQL 关系型数据库 MySQL
MySQL 高级(进阶) SQL 语句
MySQL 提供了丰富的高级 SQL 语句功能,能够处理复杂的数据查询和管理需求。通过掌握窗口函数、子查询、联合查询、复杂连接操作和事务处理等高级技术,能够大幅提升数据库操作的效率和灵活性。在实际应用中,合理使用这些高级功能,可以更高效地管理和查询数据,满足多样化的业务需求。
60 3
|
22天前
|
SQL 关系型数据库 MySQL
MySQL导入.sql文件后数据库乱码问题
本文分析了导入.sql文件后数据库备注出现乱码的原因,包括字符集不匹配、备注内容编码问题及MySQL版本或配置问题,并提供了详细的解决步骤,如检查和统一字符集设置、修改客户端连接方式、检查MySQL配置等,确保导入过程顺利。