Can not squeeze dim[1], expected a dimension of 1, got 21

简介: Can not squeeze dim[1], expected a dimension of 1, got 21

这是因为tf的文档要求label必须是一个单独的值,而不是一个one-hot编码后像[1,0,0], [0,1,0], [0,0,1].的值。

目录
相关文章
|
6月前
|
机器学习/深度学习 PyTorch 算法框架/工具
归一化技术比较研究:Batch Norm, Layer Norm, Group Norm
本文将使用合成数据集对三种归一化技术进行比较,并在每种配置下分别训练模型。记录训练损失,并比较模型的性能。
348 2
成功解决matplotlib.units.ConversionError: Failed to convert value(s) to axis units: ‘LiR‘
成功解决matplotlib.units.ConversionError: Failed to convert value(s) to axis units: ‘LiR‘
Expected more than 1 value per channel when training, got input size torch.Size
因为模型中用了batchnomolization,训练中用batch训练的时候当前batch恰好只含一个sample,而由于BatchNorm操作需要多于一个数据计算平均值,因此造成该错误。
903 0
|
PyTorch 算法框架/工具
Please ensure they have the same size. return F.mse_loss(input, target, reduction=self.reduction) 怎么解决?
这个通常是由于 input 和 target 张量的维度不匹配导致的,因此可以通过调整它们的维度来解决。
316 0
|
PyTorch 算法框架/工具
pytorch报错 RuntimeError: The size of tensor a (25) must match the size of tensor b (50) at non-singleton dimension 1 怎么解决?
这个错误提示表明,在进行某个操作时,张量a和b在第1个非单例维(即除了1以外的维度)上的大小不一致。例如,如果a是一个形状为(5, 5)的张量,而b是一个形状为(5, 10)的张量,则在第二个维度上的大小不匹配。
3726 0
解决AssertionError: size of input tensor and input format are different.tensor shape: (3, 138input_for
解决AssertionError: size of input tensor and input format are different.tensor shape: (3, 138input_for
452 0
成功解决ValueError: Cannot feed value of shape (1, 10, 4) for Tensor Placeholder:0 , which has shape
成功解决ValueError: Cannot feed value of shape (1, 10, 4) for Tensor Placeholder:0 , which has shape
成功解决ValueError: Dimension 1 in both shapes must be equal, but are 1034 and 1024. Shapes are [100,103
成功解决ValueError: Dimension 1 in both shapes must be equal, but are 1034 and 1024. Shapes are [100,103
ValueError: Error when checking : expected input_1 to have 4 dimensions, but got array with shape
ValueError: Error when checking : expected input_1 to have 4 dimensions, but got array with shape
397 0
|
索引 Python
成功解决ValueError: Shape of passed values is (33, 1), indices imply (33, 2)
成功解决ValueError: Shape of passed values is (33, 1), indices imply (33, 2)