ML之CatboostC:基于titanic泰坦尼克数据集利用catboost算法实现二分类-阿里云开发者社区

开发者社区> 一个处女座的程序猿> 正文

ML之CatboostC:基于titanic泰坦尼克数据集利用catboost算法实现二分类

简介: ML之CatboostC:基于titanic泰坦尼克数据集利用catboost算法实现二分类
+关注继续查看

设计思路

image.png


输出结果

image.png

   Pclass     Sex   Age  SibSp  Parch  Survived

0       3    male  22.0      1      0         0

1       1  female  38.0      1      0         1

2       3  female  26.0      0      0         1

3       1  female  35.0      1      0         1

4       3    male  35.0      0      0         0

Pclass        int64

Sex          object

Age         float64

SibSp         int64

Parch         int64

Survived      int64

dtype: object

object_features_ID: [1]

0: learn: 0.5469469 test: 0.5358272 best: 0.5358272 (0) total: 98.1ms remaining: 9.71s

1: learn: 0.4884967 test: 0.4770551 best: 0.4770551 (1) total: 98.7ms remaining: 4.84s

2: learn: 0.4459496 test: 0.4453159 best: 0.4453159 (2) total: 99.3ms remaining: 3.21s

3: learn: 0.4331858 test: 0.4352757 best: 0.4352757 (3) total: 99.8ms remaining: 2.4s

4: learn: 0.4197131 test: 0.4266055 best: 0.4266055 (4) total: 100ms remaining: 1.91s

5: learn: 0.4085381 test: 0.4224953 best: 0.4224953 (5) total: 101ms remaining: 1.58s

6: learn: 0.4063807 test: 0.4209804 best: 0.4209804 (6) total: 102ms remaining: 1.35s

7: learn: 0.4007713 test: 0.4155077 best: 0.4155077 (7) total: 102ms remaining: 1.17s

8: learn: 0.3971064 test: 0.4135872 best: 0.4135872 (8) total: 103ms remaining: 1.04s

9: learn: 0.3943774 test: 0.4105674 best: 0.4105674 (9) total: 103ms remaining: 928ms

10: learn: 0.3930801 test: 0.4099915 best: 0.4099915 (10) total: 104ms remaining: 839ms

11: learn: 0.3904409 test: 0.4089840 best: 0.4089840 (11) total: 104ms remaining: 764ms

12: learn: 0.3890830 test: 0.4091666 best: 0.4089840 (11) total: 105ms remaining: 701ms

13: learn: 0.3851196 test: 0.4108839 best: 0.4089840 (11) total: 105ms remaining: 647ms

14: learn: 0.3833366 test: 0.4106298 best: 0.4089840 (11) total: 106ms remaining: 600ms

15: learn: 0.3792283 test: 0.4126097 best: 0.4089840 (11) total: 106ms remaining: 558ms

16: learn: 0.3765680 test: 0.4114997 best: 0.4089840 (11) total: 107ms remaining: 522ms

17: learn: 0.3760966 test: 0.4112166 best: 0.4089840 (11) total: 107ms remaining: 489ms

18: learn: 0.3736951 test: 0.4122305 best: 0.4089840 (11) total: 108ms remaining: 461ms

19: learn: 0.3719966 test: 0.4101199 best: 0.4089840 (11) total: 109ms remaining: 435ms

20: learn: 0.3711460 test: 0.4097299 best: 0.4089840 (11) total: 109ms remaining: 411ms

21: learn: 0.3707144 test: 0.4093512 best: 0.4089840 (11) total: 110ms remaining: 389ms

22: learn: 0.3699238 test: 0.4083409 best: 0.4083409 (22) total: 110ms remaining: 370ms

23: learn: 0.3670864 test: 0.4071850 best: 0.4071850 (23) total: 111ms remaining: 351ms

24: learn: 0.3635514 test: 0.4038399 best: 0.4038399 (24) total: 111ms remaining: 334ms

25: learn: 0.3627657 test: 0.4025837 best: 0.4025837 (25) total: 112ms remaining: 319ms

26: learn: 0.3621028 test: 0.4018449 best: 0.4018449 (26) total: 113ms remaining: 304ms

27: learn: 0.3616121 test: 0.4011693 best: 0.4011693 (27) total: 113ms remaining: 291ms

28: learn: 0.3614262 test: 0.4011820 best: 0.4011693 (27) total: 114ms remaining: 278ms

29: learn: 0.3610673 test: 0.4005475 best: 0.4005475 (29) total: 114ms remaining: 267ms

30: learn: 0.3588062 test: 0.4002801 best: 0.4002801 (30) total: 115ms remaining: 256ms

31: learn: 0.3583703 test: 0.3997255 best: 0.3997255 (31) total: 116ms remaining: 246ms

32: learn: 0.3580553 test: 0.4001878 best: 0.3997255 (31) total: 116ms remaining: 236ms

33: learn: 0.3556808 test: 0.4004169 best: 0.3997255 (31) total: 118ms remaining: 228ms

34: learn: 0.3536833 test: 0.4003229 best: 0.3997255 (31) total: 119ms remaining: 220ms

35: learn: 0.3519948 test: 0.4008047 best: 0.3997255 (31) total: 119ms remaining: 212ms

36: learn: 0.3515452 test: 0.4000576 best: 0.3997255 (31) total: 120ms remaining: 204ms

37: learn: 0.3512962 test: 0.3997214 best: 0.3997214 (37) total: 120ms remaining: 196ms

38: learn: 0.3507648 test: 0.4001569 best: 0.3997214 (37) total: 121ms remaining: 189ms

39: learn: 0.3489575 test: 0.4009203 best: 0.3997214 (37) total: 121ms remaining: 182ms

40: learn: 0.3480966 test: 0.4014031 best: 0.3997214 (37) total: 122ms remaining: 175ms

41: learn: 0.3477613 test: 0.4009293 best: 0.3997214 (37) total: 122ms remaining: 169ms

42: learn: 0.3472945 test: 0.4006602 best: 0.3997214 (37) total: 123ms remaining: 163ms

43: learn: 0.3465271 test: 0.4007531 best: 0.3997214 (37) total: 124ms remaining: 157ms

44: learn: 0.3461538 test: 0.4010608 best: 0.3997214 (37) total: 124ms remaining: 152ms

45: learn: 0.3455060 test: 0.4012489 best: 0.3997214 (37) total: 125ms remaining: 146ms

46: learn: 0.3449922 test: 0.4013439 best: 0.3997214 (37) total: 125ms remaining: 141ms

47: learn: 0.3445333 test: 0.4010754 best: 0.3997214 (37) total: 126ms remaining: 136ms

48: learn: 0.3443186 test: 0.4011180 best: 0.3997214 (37) total: 126ms remaining: 132ms

49: learn: 0.3424633 test: 0.4016071 best: 0.3997214 (37) total: 127ms remaining: 127ms

50: learn: 0.3421565 test: 0.4013135 best: 0.3997214 (37) total: 128ms remaining: 123ms

51: learn: 0.3417523 test: 0.4009993 best: 0.3997214 (37) total: 128ms remaining: 118ms

52: learn: 0.3415669 test: 0.4009101 best: 0.3997214 (37) total: 129ms remaining: 114ms

53: learn: 0.3413867 test: 0.4010833 best: 0.3997214 (37) total: 130ms remaining: 110ms

54: learn: 0.3405166 test: 0.4014830 best: 0.3997214 (37) total: 130ms remaining: 107ms

55: learn: 0.3401535 test: 0.4015556 best: 0.3997214 (37) total: 131ms remaining: 103ms

56: learn: 0.3395217 test: 0.4021097 best: 0.3997214 (37) total: 132ms remaining: 99.4ms

57: learn: 0.3393024 test: 0.4023377 best: 0.3997214 (37) total: 132ms remaining: 95.8ms

58: learn: 0.3389909 test: 0.4019616 best: 0.3997214 (37) total: 133ms remaining: 92.3ms

59: learn: 0.3388494 test: 0.4019746 best: 0.3997214 (37) total: 133ms remaining: 88.9ms

60: learn: 0.3384901 test: 0.4017470 best: 0.3997214 (37) total: 134ms remaining: 85.6ms

61: learn: 0.3382250 test: 0.4018783 best: 0.3997214 (37) total: 134ms remaining: 82.4ms

62: learn: 0.3345761 test: 0.4039633 best: 0.3997214 (37) total: 135ms remaining: 79.3ms

63: learn: 0.3317548 test: 0.4050218 best: 0.3997214 (37) total: 136ms remaining: 76.3ms

64: learn: 0.3306501 test: 0.4036656 best: 0.3997214 (37) total: 136ms remaining: 73.3ms

65: learn: 0.3292310 test: 0.4034339 best: 0.3997214 (37) total: 137ms remaining: 70.5ms

66: learn: 0.3283600 test: 0.4033661 best: 0.3997214 (37) total: 137ms remaining: 67.6ms

67: learn: 0.3282389 test: 0.4034237 best: 0.3997214 (37) total: 138ms remaining: 64.9ms

68: learn: 0.3274603 test: 0.4039310 best: 0.3997214 (37) total: 138ms remaining: 62.2ms

69: learn: 0.3273430 test: 0.4041663 best: 0.3997214 (37) total: 139ms remaining: 59.6ms

70: learn: 0.3271585 test: 0.4044144 best: 0.3997214 (37) total: 140ms remaining: 57.1ms

71: learn: 0.3268457 test: 0.4046981 best: 0.3997214 (37) total: 140ms remaining: 54.6ms

72: learn: 0.3266497 test: 0.4042724 best: 0.3997214 (37) total: 141ms remaining: 52.1ms

73: learn: 0.3259684 test: 0.4048797 best: 0.3997214 (37) total: 141ms remaining: 49.7ms

74: learn: 0.3257845 test: 0.4044766 best: 0.3997214 (37) total: 142ms remaining: 47.3ms

75: learn: 0.3256157 test: 0.4047031 best: 0.3997214 (37) total: 143ms remaining: 45.1ms

76: learn: 0.3251433 test: 0.4043698 best: 0.3997214 (37) total: 144ms remaining: 42.9ms

77: learn: 0.3247743 test: 0.4041652 best: 0.3997214 (37) total: 144ms remaining: 40.6ms

78: learn: 0.3224876 test: 0.4058880 best: 0.3997214 (37) total: 145ms remaining: 38.5ms

79: learn: 0.3223339 test: 0.4058139 best: 0.3997214 (37) total: 145ms remaining: 36.3ms

80: learn: 0.3211858 test: 0.4060056 best: 0.3997214 (37) total: 146ms remaining: 34.2ms

81: learn: 0.3200423 test: 0.4067103 best: 0.3997214 (37) total: 147ms remaining: 32.2ms

82: learn: 0.3198329 test: 0.4069039 best: 0.3997214 (37) total: 147ms remaining: 30.1ms

83: learn: 0.3196561 test: 0.4067853 best: 0.3997214 (37) total: 148ms remaining: 28.1ms

84: learn: 0.3193160 test: 0.4072288 best: 0.3997214 (37) total: 148ms remaining: 26.1ms

85: learn: 0.3184463 test: 0.4077451 best: 0.3997214 (37) total: 149ms remaining: 24.2ms

86: learn: 0.3175777 test: 0.4086243 best: 0.3997214 (37) total: 149ms remaining: 22.3ms

87: learn: 0.3173824 test: 0.4082013 best: 0.3997214 (37) total: 150ms remaining: 20.4ms

88: learn: 0.3172840 test: 0.4083946 best: 0.3997214 (37) total: 150ms remaining: 18.6ms

89: learn: 0.3166252 test: 0.4086761 best: 0.3997214 (37) total: 151ms remaining: 16.8ms

90: learn: 0.3164144 test: 0.4083237 best: 0.3997214 (37) total: 151ms remaining: 15ms

91: learn: 0.3162137 test: 0.4083699 best: 0.3997214 (37) total: 152ms remaining: 13.2ms

92: learn: 0.3155611 test: 0.4091627 best: 0.3997214 (37) total: 152ms remaining: 11.5ms

93: learn: 0.3153976 test: 0.4089484 best: 0.3997214 (37) total: 153ms remaining: 9.76ms

94: learn: 0.3139281 test: 0.4116939 best: 0.3997214 (37) total: 154ms remaining: 8.08ms

95: learn: 0.3128878 test: 0.4146652 best: 0.3997214 (37) total: 154ms remaining: 6.42ms

96: learn: 0.3127863 test: 0.4145767 best: 0.3997214 (37) total: 155ms remaining: 4.78ms

97: learn: 0.3126696 test: 0.4142118 best: 0.3997214 (37) total: 155ms remaining: 3.17ms

98: learn: 0.3120048 test: 0.4140831 best: 0.3997214 (37) total: 156ms remaining: 1.57ms

99: learn: 0.3117563 test: 0.4138267 best: 0.3997214 (37) total: 156ms remaining: 0us

bestTest = 0.3997213503

bestIteration = 37

Shrink model to first 38 iterations.


版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

相关文章
ML之LoR:LoR之二分类之线性决策算法实现根据两课成绩分数~预测期末通过率(合格还是不合格)
ML之LoR:LoR之二分类之线性决策算法实现根据两课成绩分数~预测期末通过率(合格还是不合格)
15 0
使用Boost.PropertyTree处理XML、JSON和INI数据
Boost.PropertyTree 应该是 Boost 1.41.0 开始正式加入 Boost 版本的。目前 ( 2010/02/28 ) 能下到的最新版本是 1.42.0。 主要作用/应用场合 Boost.PropertyTree 提供了一种结构化的数据存储容器。
1426 0
ML之K-means:基于(完整的)手写数字图片识别数据集利用K-means算法实现图片聚类
ML之K-means:基于(完整的)手写数字图片识别数据集利用K-means算法实现图片聚类
58 0
ML之CatboostC:基于titanic泰坦尼克数据集利用catboost算法实现二分类
ML之CatboostC:基于titanic泰坦尼克数据集利用catboost算法实现二分类
24 0
DL之Attention:基于ClutteredMNIST手写数字图片数据集分别利用CNN_Init、ST_CNN算法(CNN+SpatialTransformer)实现多分类预测(一)
DL之Attention:基于ClutteredMNIST手写数字图片数据集分别利用CNN_Init、ST_CNN算法(CNN+SpatialTransformer)实现多分类预测
39 0
JAVA常见算法题(十五)
package com.xiaowu.demo; /** * * 输入三个整数x,y,z,请把这三个数由小到大输出。 * * @author WQ * */ public class Demo15 { public static void main(String[] ar...
548 0
ML之RS之CF:基于用户的CF算法—利用大量用户的电影及其评分数据集对一个新用户Jason进行推荐电影+(已知Jason曾观看几十部电影及其评分)
ML之RS之CF:基于用户的CF算法—利用大量用户的电影及其评分数据集对一个新用户Jason进行推荐电影+(已知Jason曾观看几十部电影及其评分)
17 0
+关注
一个处女座的程序猿
国内互联网圈知名博主、人工智能领域优秀创作者,全球最大中文IT社区博客专家、CSDN开发者联盟生态成员、中国开源社区专家、华为云社区专家、51CTO社区专家、Python社区专家等,曾受邀采访和评审十多次。仅在国内的CSDN平台,博客文章浏览量超过2500万,拥有超过57万的粉丝。
1701
文章
0
问答
文章排行榜
最热
最新
相关电子书
更多
《2021云上架构与运维峰会演讲合集》
立即下载
《零基础CSS入门教程》
立即下载
《零基础HTML入门教程》
立即下载