Knifey-Spoony数据集的简介
Knifey-Spoony数据集:含有刀子、叉子、汤匙,共计22M左右。Knifey-Spoony数据集由一个视频文件取出帧并转换成图像产生。 训练集包含4170幅图像,测试集包含530幅图像。 训练集中只有994张叉子的图像,却包含着1201张刀子的图像和1966张汤匙的图像。
##The Knifey-Spoony Data-Set
[Original repository on GitHub](https://github.com/Hvass-Labs/knifey-spoony)
Original author is [Magnus Erik Hvass Pedersen](http://www.hvass-labs.org)
## Introduction
* This is the Knifey-Spoony image data-set.
* The images show 3 types of objects: Cutlery knives, spoons and forks on a few different backgrounds.
* The classes are named: knifey, spoony and forky. (It's a spoof from The Simpsons on the 1980's movie Crocodile Dundee.)
* These images are used in [TensorFlow Tutorial #09](https://github.com/Hvass-Labs/TensorFlow-Tutorials/blob/master/08_Video_Data.ipynb) as an example of a classification problem.
* There is a [script](https://github.com/Hvass-Labs/TensorFlow-Tutorials/blob/master/convert.py) for converting videos to images so you can easily create your own data-set with thousands of images from just a few video-recordings.
*这是Knifey-Spoony图像数据集。
*图片显示了3种不同背景的物体:刀具、勺子和叉子。
*这些课程被命名为:刀叉,幽灵和叉子。(这是1980年代电影《The Simpsons》中辛普森一家的一个spoof。)
*这些图像在[tensorflow tutorial_09]中(https://github.com/hvass-labs/tensorflow-tutorials/blob/master/08_video_data.ipynb)用作分类问题的示例。
*有一个[脚本](https://github.com/hvass-labs/tensorflow-tutorials/blob/master/convert.py)用于将视频转换为图像,这样您就可以轻松地创建自己的数据集,其中包含仅几段视频记录中的数千个图像。
## Images
* All images are 200 x 200 pixels with 3 colour channels.
* There is a total of 4700 jpg-images of which 530 are test-images with different backgrounds than the training-set.
* The knifey class has 1347 images total (137 images in the test-set).
* The spoony class has 2208 images total (242 images in the test-set).
* The forky class has 1145 images total (151 images in the test-set).
*所有图像均为200 x 200像素,带有3个彩色通道。
*总共有4700张JPG图像,其中530张是测试图像,其背景与训练集不同。
*Knifey类总共有1347个图像(测试集中有137个图像)。
*Spoony类总共有2208个图像(测试集中有242个图像)。
*Forky类总共有1145个图像(测试集中有151个图像)。
Knifey-Spoony数据集的下载
The archived tar-ball is automatically downloaded and extracted by using the [knifey.py](https://github.com/Hvass-Labs/TensorFlow-Tutorials/blob/master/knifey.py) module for Python.
Knifey-Spoony数据集的使用方法
DL之VGG16:基于VGG16(Keras)利用Knifey-Spoony数据集对网络架构FineTuning和迁移学习
https://yunyaniu.blog.csdn.net/article/details/99485570