DL之DNN:自定义2层神经网络TwoLayerNet模型(封装为层级结构)利用MNIST数据集进行训练、预测

简介: DL之DNN:自定义2层神经网络TwoLayerNet模型(封装为层级结构)利用MNIST数据集进行训练、预测

输出结

image.png

image.png


image.png

 

设计思

image.png

 

核心代


 

class TwoLayerNet:

   def __init__(self, input_size, hidden_size, output_size, weight_init_std = 0.01):

       self.params = {}

       self.params['W1'] = weight_init_std * np.random.randn(input_size, hidden_size)

       self.params['b1'] = np.zeros(hidden_size)

       self.params['W2'] = weight_init_std * np.random.randn(hidden_size, output_size)

       self.params['b2'] = np.zeros(output_size)

       self.layers = OrderedDict()

       self.layers['Affine1'] = Affine(self.params['W1'], self.params['b1'])

       self.layers['Relu1'] = Relu()

       self.layers['Affine2'] = Affine(self.params['W2'], self.params['b2'])

       self.lastLayer = SoftmaxWithLoss()

     

   def predict(self, x):

       for layer in self.layers.values():

           x = layer.forward(x)

     

       return x

     

   # x:输入数据, t:监督数据

   def loss(self, x, t):

       y = self.predict(x)

       return self.lastLayer.forward(y, t)

 

   def accuracy(self, x, t):

       y = self.predict(x)

       y = np.argmax(y, axis=1)

       if t.ndim != 1 : t = np.argmax(t, axis=1)

     

       accuracy = np.sum(y == t) / float(x.shape[0])

       return accuracy

     

     

   def gradient(self, x, t):

       self.loss(x, t)

       dout = 1

       dout = self.lastLayer.backward(dout)

     

       layers = list(self.layers.values())

       layers.reverse()

       for layer in layers:

           dout = layer.backward(dout)

       grads = {}

       grads['W1'], grads['b1'] = self.layers['Affine1'].dW, self.layers['Affine1'].db

       grads['W2'], grads['b2'] = self.layers['Affine2'].dW, self.layers['Affine2'].db

       return grads


相关文章
|
13天前
|
存储 网络协议 安全
30 道初级网络工程师面试题,涵盖 OSI 模型、TCP/IP 协议栈、IP 地址、子网掩码、VLAN、STP、DHCP、DNS、防火墙、NAT、VPN 等基础知识和技术,帮助小白们充分准备面试,顺利踏入职场
本文精选了 30 道初级网络工程师面试题,涵盖 OSI 模型、TCP/IP 协议栈、IP 地址、子网掩码、VLAN、STP、DHCP、DNS、防火墙、NAT、VPN 等基础知识和技术,帮助小白们充分准备面试,顺利踏入职场。
40 2
|
14天前
|
运维 网络协议 算法
7 层 OSI 参考模型:详解网络通信的层次结构
7 层 OSI 参考模型:详解网络通信的层次结构
38 1
|
20天前
|
机器学习/深度学习 自然语言处理 前端开发
前端神经网络入门:Brain.js - 详细介绍和对比不同的实现 - CNN、RNN、DNN、FFNN -无需准备环境打开浏览器即可测试运行-支持WebGPU加速
本文介绍了如何使用 JavaScript 神经网络库 **Brain.js** 实现不同类型的神经网络,包括前馈神经网络(FFNN)、深度神经网络(DNN)和循环神经网络(RNN)。通过简单的示例和代码,帮助前端开发者快速入门并理解神经网络的基本概念。文章还对比了各类神经网络的特点和适用场景,并简要介绍了卷积神经网络(CNN)的替代方案。
|
25天前
|
网络协议 算法 网络性能优化
计算机网络常见面试题(一):TCP/IP五层模型、TCP三次握手、四次挥手,TCP传输可靠性保障、ARQ协议
计算机网络常见面试题(一):TCP/IP五层模型、应用层常见的协议、TCP与UDP的区别,TCP三次握手、四次挥手,TCP传输可靠性保障、ARQ协议、ARP协议
|
27天前
|
存储 缓存 Dart
Flutter&鸿蒙next 封装 Dio 网络请求详解:登录身份验证与免登录缓存
本文详细介绍了如何在 Flutter 中使用 Dio 封装网络请求,实现用户登录身份验证及免登录缓存功能。首先在 `pubspec.yaml` 中添加 Dio 和 `shared_preferences` 依赖,然后创建 `NetworkService` 类封装 Dio 的功能,包括请求拦截、响应拦截、Token 存储和登录请求。最后,通过一个登录界面示例展示了如何在实际应用中使用 `NetworkService` 进行身份验证。希望本文能帮助你在 Flutter 中更好地处理网络请求和用户认证。
149 1
|
1月前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
74 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
6月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】26.卷积神经网络之AlexNet模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】26.卷积神经网络之AlexNet模型介绍及其Pytorch实现【含完整代码】
|
6月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
|
4月前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch代码实现神经网络
这段代码示例展示了如何在PyTorch中构建一个基础的卷积神经网络(CNN)。该网络包括两个卷积层,分别用于提取图像特征,每个卷积层后跟一个池化层以降低空间维度;之后是三个全连接层,用于分类输出。此结构适用于图像识别任务,并可根据具体应用调整参数与层数。
|
4月前
|
机器学习/深度学习 数据可视化 Python
如何可视化神经网络的神经元节点之间的连接?附有Python预处理代码
该博客展示了如何通过Python预处理神经网络权重矩阵并将其导出为表格,然后使用Chiplot网站来可视化神经网络的神经元节点之间的连接。
57 0
如何可视化神经网络的神经元节点之间的连接?附有Python预处理代码