AI:人工智能概念之机器学习、深度学习中常见关键词、参数等中英文对照(绝对干货)(五)

简介: 本博主基本收集了网上所有有关于ML、DL的中文解释词汇,机器学习、深度学习中常见关键词、参数等中英文对照,如有没有涉及之处,请留言,本博主将持续续修改、更新!圆小白自学ML、DL之梦!

机器学习专业名词中英文对照



activation 激活值

activation function 激活函数

additive noise 加性噪声

autoencoder 自编码器

Autoencoders 自编码算法

average firing rate 平均激活率

average sum-of-squares error 均方差

backpropagation 后向传播

basis 基

basis feature vectors 特征基向量

batch gradient ascent 批量梯度上升法

Bayesian regularization method 贝叶斯规则化方法

Bernoulli random variable 伯努利随机变量

bias term 偏置项

binary classfication 二元分类

class labels 类型标记

concatenation 级联

conjugate gradient 共轭梯度

contiguous groups 联通区域

convex optimization software 凸优化软件

convolution 卷积

cost function 代价函数

covariance matrix 协方差矩阵

DC component 直流分量

decorrelation 去相关

degeneracy 退化

demensionality reduction 降维

derivative 导函数

diagonal 对角线

diffusion of gradients 梯度的弥散

eigenvalue 特征值

eigenvector 特征向量

error term 残差

feature matrix 特征矩阵

feature standardization 特征标准化

feedforward architectures 前馈结构算法

feedforward neural network 前馈神经网络

feedforward pass 前馈传导

fine-tuned 微调

first-order feature 一阶特征

forward pass 前向传导

forward propagation 前向传播

Gaussian prior 高斯先验概率

generative model 生成模型

gradient descent 梯度下降

Greedy layer-wise training 逐层贪婪训练方法

grouping matrix 分组矩阵

Hadamard product 阿达马乘积

Hessian matrix Hessian 矩阵

hidden layer 隐含层

hidden units 隐藏神经元

Hierarchical grouping 层次型分组

higher-order features 更高阶特征

highly non-convex optimization problem 高度非凸的优化问题

histogram 直方图

hyperbolic tangent 双曲正切函数

hypothesis 估值,假设

identity activation function 恒等激励函数

IID 独立同分布

illumination 照明

inactive 抑制

independent component analysis 独立成份分析

input domains 输入域

input layer 输入层

intensity 亮度/灰度

intercept term 截距

KL divergence 相对熵

KL divergence KL分散度

k-Means K-均值

learning rate 学习速率

least squares 最小二乘法

linear correspondence 线性响应

linear superposition 线性叠加

line-search algorithm 线搜索算法

local mean subtraction 局部均值消减

local optima 局部最优解

logistic regression 逻辑回归

loss function 损失函数

low-pass filtering 低通滤波

magnitude 幅值

MAP 极大后验估计

maximum likelihood estimation 极大似然估计

mean 平均值

MFCC Mel 倒频系数

multi-class classification 多元分类

neural networks 神经网络

neuron 神经元

Newton’s method 牛顿法

non-convex function 非凸函数

non-linear feature 非线性特征

norm 范式

norm bounded 有界范数

norm constrained 范数约束

normalization 归一化

numerical roundoff errors 数值舍入误差

numerically checking 数值检验

numerically reliable 数值计算上稳定

object detection 物体检测

objective function 目标函数

off-by-one error 缺位错误

orthogonalization 正交化

output layer 输出层

overall cost function 总体代价函数

over-complete basis 超完备基

over-fitting 过拟合

parts of objects 目标的部件

part-whole decompostion 部分-整体分解

PCA 主元分析

penalty term 惩罚因子

per-example mean subtraction 逐样本均值消减

pooling 池化

pretrain 预训练

principal components analysis 主成份分析

quadratic constraints 二次约束

RBMs 受限Boltzman机

reconstruction based models 基于重构的模型

reconstruction cost 重建代价

reconstruction term 重构项

redundant 冗余

reflection matrix 反射矩阵

regularization 正则化

regularization term 正则化项

rescaling 缩放

robust 鲁棒性

run 行程

second-order feature 二阶特征

sigmoid activation function S型激励函数

significant digits 有效数字

singular value 奇异值

singular vector 奇异向量

smoothed L1 penalty 平滑的L1范数惩罚

Smoothed topographic L1 sparsity penalty 平滑地形L1稀疏惩罚函数

smoothing 平滑

Softmax Regresson Softmax回归

sorted in decreasing order 降序排列

source features 源特征

sparse autoencoder 消减归一化

Sparsity 稀疏性

sparsity parameter 稀疏性参数

sparsity penalty 稀疏惩罚

square function 平方函数

squared-error 方差

stationary 平稳性(不变性)

stationary stochastic process 平稳随机过程

step-size 步长值

supervised learning 监督学习

symmetric positive semi-definite matrix 对称半正定矩阵

symmetry breaking 对称失效

tanh function 双曲正切函数

the average activation 平均活跃度

the derivative checking method 梯度验证方法

the empirical distribution 经验分布函数

the energy function 能量函数

the Lagrange dual 拉格朗日对偶函数

the log likelihood 对数似然函数

the pixel intensity value 像素灰度值

the rate of convergence 收敛速度

topographic cost term 拓扑代价项

topographic ordered 拓扑秩序

transformation 变换

translation invariant 平移不变性

trivial answer 平凡解

under-complete basis 不完备基

unrolling 组合扩展

unsupervised learning 无监督学习

variance 方差

vecotrized implementation 向量化实现

vectorization 矢量化

visual cortex 视觉皮层

weight decay 权重衰减

weighted average 加权平均值

whitening 白化

zero-mean 均值为零


Letter A


Accumulated error backpropagation 累积误差逆传播

Activation Function 激活函数

Adaptive Resonance Theory/ART 自适应谐振理论

Addictive model 加性学习

Adversarial Networks 对抗网络

Affine Layer 仿射层

Affinity matrix 亲和矩阵

Agent 代理 / 智能体

Algorithm 算法

Alpha-beta pruning α-β剪枝

Anomaly detection 异常检测

Approximation 近似

Area Under ROC Curve/AUC Roc 曲线下面积

Artificial General Intelligence/AGI 通用人工智能

Artificial Intelligence/AI 人工智能

Association analysis 关联分析

Attention mechanism 注意力机制

Attribute conditional independence assumption 属性条件独立性假设

Attribute space 属性空间

Attribute value 属性值

Autoencoder 自编码器

Automatic speech recognition 自动语音识别

Automatic summarization 自动摘要

Average gradient 平均梯度

Average-Pooling 平均池化


Letter B


Backpropagation Through Time 通过时间的反向传播

Backpropagation/BP 反向传播

Base learner 基学习器

Base learning algorithm 基学习算法

Batch Normalization/BN 批量归一化

Bayes decision rule 贝叶斯判定准则

Bayes Model Averaging/BMA 贝叶斯模型平均

Bayes optimal classifier 贝叶斯最优分类器

Bayesian decision theory 贝叶斯决策论

Bayesian network 贝叶斯网络

Between-class scatter matrix 类间散度矩阵

Bias 偏置 / 偏差

Bias-variance decomposition 偏差-方差分解

Bias-Variance Dilemma 偏差 – 方差困境

Bi-directional Long-Short Term Memory/Bi-LSTM 双向长短期记忆

Binary classification 二分类

Binomial test 二项检验

Bi-partition 二分法

Boltzmann machine 玻尔兹曼机

Bootstrap sampling 自助采样法/可重复采样/有放回采样

Bootstrapping 自助法

Break-Event Point/BEP 平衡点


Letter C


Calibration 校准

Cascade-Correlation 级联相关

Categorical attribute 离散属性

Class-conditional probability 类条件概率

Classification and regression tree/CART 分类与回归树

Classifier 分类器

Class-imbalance 类别不平衡

Closed -form 闭式

Cluster 簇/类/集群

Cluster analysis 聚类分析

Clustering 聚类

Clustering ensemble 聚类集成

Co-adapting 共适应

Coding matrix 编码矩阵

COLT 国际学习理论会议

Committee-based learning 基于委员会的学习

Competitive learning 竞争型学习

Component learner 组件学习器

Comprehensibility 可解释性

Computation Cost 计算成本

Computational Linguistics 计算语言学

Computer vision 计算机视觉

Concept drift 概念漂移

Concept Learning System /CLS 概念学习系统

Conditional entropy 条件熵

Conditional mutual information 条件互信息

Conditional Probability Table/CPT 条件概率表

Conditional random field/CRF 条件随机场

Conditional risk 条件风险

Confidence 置信度

Confusion matrix 混淆矩阵

Connection weight 连接权

Connectionism 连结主义

Consistency 一致性/相合性

Contingency table 列联表

Continuous attribute 连续属性

Convergence 收敛

Conversational agent 会话智能体

Convex quadratic programming 凸二次规划

Convexity 凸性

Convolutional neural network/CNN 卷积神经网络

Co-occurrence 同现

Correlation coefficient 相关系数

Cosine similarity 余弦相似度

Cost curve 成本曲线

Cost Function 成本函数

Cost matrix 成本矩阵

Cost-sensitive 成本敏感

Cross entropy 交叉熵

Cross validation 交叉验证

Crowdsourcing 众包

Curse of dimensionality 维数灾难

Cut point 截断点

Cutting plane algorithm 割平面法


Letter D


Data mining 数据挖掘

Data set 数据集

Decision Boundary 决策边界

Decision stump 决策树桩

Decision tree 决策树/判定树

Deduction 演绎

Deep Belief Network 深度信念网络

Deep Convolutional Generative Adversarial Network/DCGAN 深度卷积生成对抗网络

Deep learning 深度学习

Deep neural network/DNN 深度神经网络

Deep Q-Learning 深度 Q 学习

Deep Q-Network 深度 Q 网络

Density estimation 密度估计

Density-based clustering 密度聚类

Differentiable neural computer 可微分神经计算机

Dimensionality reduction algorithm 降维算法

Directed edge 有向边

Disagreement measure 不合度量

Discriminative model 判别模型

Discriminator 判别器

Distance measure 距离度量

Distance metric learning 距离度量学习

Distribution 分布

Divergence 散度

Diversity measure 多样性度量/差异性度量

Domain adaption 领域自适应

Downsampling 下采样

D-separation (Directed separation) 有向分离

Dual problem 对偶问题

Dummy node 哑结点

Dynamic Fusion 动态融合

Dynamic programming 动态规划


Letter E


Eigenvalue decomposition 特征值分解

Embedding 嵌入

Emotional analysis 情绪分析

Empirical conditional entropy 经验条件熵

Empirical entropy 经验熵

Empirical error 经验误差

Empirical risk 经验风险

End-to-End 端到端

Energy-based model 基于能量的模型

Ensemble learning 集成学习

Ensemble pruning 集成修剪

Error Correcting Output Codes/ECOC 纠错输出码

Error rate 错误率

Error-ambiguity decomposition 误差-分歧分解

Euclidean distance 欧氏距离

Evolutionary computation 演化计算

Expectation-Maximization 期望最大化

Expected loss 期望损失

Exploding Gradient Problem 梯度爆炸问题

Exponential loss function 指数损失函数

Extreme Learning Machine/ELM 超限学习机


Letter F


Factorization 因子分解

False negative 假负类

False positive 假正类

False Positive Rate/FPR 假正例率

Feature engineering 特征工程

Feature selection 特征选择

Feature vector 特征向量

Featured Learning 特征学习

Feedforward Neural Networks/FNN 前馈神经网络

Fine-tuning 微调

Flipping output 翻转法

Fluctuation 震荡

Forward stagewise algorithm 前向分步算法

Frequentist 频率主义学派

Full-rank matrix 满秩矩阵

Functional neuron 功能神经元


Letter G


Gain ratio 增益率

Game theory 博弈论

Gaussian kernel function 高斯核函数

Gaussian Mixture Model 高斯混合模型

General Problem Solving 通用问题求解

Generalization 泛化

Generalization error 泛化误差

Generalization error bound 泛化误差上界

Generalized Lagrange function 广义拉格朗日函数

Generalized linear model 广义线性模型

Generalized Rayleigh quotient 广义瑞利商

Generative Adversarial Networks/GAN 生成对抗网络

Generative Model 生成模型

Generator 生成器

Genetic Algorithm/GA 遗传算法

Gibbs sampling 吉布斯采样

Gini index 基尼指数

Global minimum 全局最小

Global Optimization 全局优化

Gradient boosting 梯度提升

Gradient Descent 梯度下降

Graph theory 图论

Ground-truth 真相/真实


Letter H


Hard margin 硬间隔

Hard voting 硬投票

Harmonic mean 调和平均

Hesse matrix 海塞矩阵

Hidden dynamic model 隐动态模型

Hidden layer 隐藏层

Hidden Markov Model/HMM 隐马尔可夫模型

Hierarchical clustering 层次聚类

Hilbert space 希尔伯特空间

Hinge loss function 合页损失函数

Hold-out 留出法

Homogeneous 同质

Hybrid computing 混合计算

Hyperparameter 超参数

Hypothesis 假设

Hypothesis test 假设验证



相关文章
|
8天前
|
机器学习/深度学习 人工智能 安全
探索AI的未来:从机器学习到深度学习
【10月更文挑战第28天】本文将带你走进AI的世界,从机器学习的基本概念到深度学习的复杂应用,我们将一起探索AI的未来。你将了解到AI如何改变我们的生活,以及它在未来可能带来的影响。无论你是AI专家还是初学者,这篇文章都将为你提供新的视角和思考。让我们一起探索AI的奥秘,看看它将如何塑造我们的未来。
36 3
|
30天前
|
机器学习/深度学习 人工智能 监控
揭秘人工智能:机器学习的魔法
【10月更文挑战第6天】本文将带你走进人工智能的世界,了解机器学习如何改变我们的生活。我们将深入探讨机器学习的原理,以及它在各个领域的应用。同时,我们也会分享一些实用的代码示例,帮助你更好地理解和应用机器学习。无论你是初学者还是专业人士,这篇文章都将为你提供有价值的信息和启示。让我们一起探索这个神奇的领域吧!
|
18天前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能与机器学习:探索未来的技术边界
【10月更文挑战第18天】 在这篇文章中,我们将深入探讨人工智能(AI)和机器学习(ML)的基础知识、应用领域以及未来趋势。通过对比分析,我们将揭示这些技术如何改变我们的生活和工作方式,并预测它们在未来可能带来的影响。文章旨在为读者提供一个全面而深入的理解,帮助他们更好地把握这一领域的发展趋势。
|
4天前
|
传感器 机器学习/深度学习 人工智能
自动驾驶汽车中的AI:从概念到现实
【10月更文挑战第31天】自动驾驶汽车曾是科幻概念,如今正逐步成为现实。本文探讨了自动驾驶汽车的发展历程,从早期的机械控制到现代的AI技术应用,包括传感器融合、计算机视觉、路径规划和决策控制等方面。尽管面临安全性和法规挑战,自动驾驶汽车在商用运输、公共交通和乘用车领域展现出巨大潜力,未来将为人类带来更安全、便捷、环保的出行方式。
|
5天前
|
机器学习/深度学习 人工智能 自然语言处理
探索人工智能与机器学习的边界####
本文深入探讨了人工智能(AI)与机器学习(ML)领域的最新进展,重点分析了深度学习技术如何推动AI的边界不断扩展。通过具体案例研究,揭示了这些技术在图像识别、自然语言处理和自动驾驶等领域的应用现状及未来趋势。同时,文章还讨论了当前面临的挑战,如数据隐私、算法偏见和可解释性问题,并提出了相应的解决策略。 ####
|
1月前
|
机器学习/深度学习 自然语言处理 JavaScript
信息论、机器学习的核心概念:熵、KL散度、JS散度和Renyi散度的深度解析及应用
在信息论、机器学习和统计学领域中,KL散度(Kullback-Leibler散度)是量化概率分布差异的关键概念。本文深入探讨了KL散度及其相关概念,包括Jensen-Shannon散度和Renyi散度。KL散度用于衡量两个概率分布之间的差异,而Jensen-Shannon散度则提供了一种对称的度量方式。Renyi散度通过可调参数α,提供了更灵活的散度度量。这些概念不仅在理论研究中至关重要,在实际应用中也广泛用于数据压缩、变分自编码器、强化学习等领域。通过分析电子商务中的数据漂移实例,展示了这些散度指标在捕捉数据分布变化方面的独特优势,为企业提供了数据驱动的决策支持。
53 2
信息论、机器学习的核心概念:熵、KL散度、JS散度和Renyi散度的深度解析及应用
|
2天前
|
机器学习/深度学习 人工智能 安全
人工智能与机器学习在网络安全中的应用
人工智能与机器学习在网络安全中的应用
13 0
|
26天前
|
机器学习/深度学习 人工智能 算法
揭开深度学习与传统机器学习的神秘面纱:从理论差异到实战代码详解两者间的选择与应用策略全面解析
【10月更文挑战第10天】本文探讨了深度学习与传统机器学习的区别,通过图像识别和语音处理等领域的应用案例,展示了深度学习在自动特征学习和处理大规模数据方面的优势。文中还提供了一个Python代码示例,使用TensorFlow构建多层感知器(MLP)并与Scikit-learn中的逻辑回归模型进行对比,进一步说明了两者的不同特点。
61 2
|
1月前
|
机器学习/深度学习 人工智能 算法
人工智能与机器学习在医疗诊断中的应用
【10月更文挑战第3天】人工智能与机器学习在医疗诊断中的应用
41 3
|
22天前
|
机器学习/深度学习 自然语言处理 算法
机器学习和深度学习之间的区别
机器学习和深度学习在实际应用中各有优势和局限性。机器学习适用于一些数据量较小、问题相对简单、对模型解释性要求较高的场景;而深度学习则在处理大规模、复杂的数据和任务时表现出色,但需要更多的计算资源和数据,并且模型的解释性较差。在实际应用中,需要根据具体的问题和需求,结合两者的优势,选择合适的方法来解决问题。
50 0
下一篇
无影云桌面