Google DeepMind团队公布玩游戏比人厉害的AI如何做出

简介:

Google DeepMind团队在《自然》杂志发表论文,公布玩游戏比人厉害的AI是如何做出来的。


电脑会玩游戏已经不算稀奇,比方说,一般人玩棋类游戏已经玩不过计算机了。但如果事先不告诉计算机应该怎么玩,而只是给它提供这三样东西:控制器、显示器、游戏得分,让它看着显示器的显示控制控制器,然后要求它尽可能得高分,那基本上大部分的 AI 就一筹莫展了。


所以,当 2013 年 12 月 DeepMind 的团队首次展现他们靠不断试错学习最后成为击败人类专业玩家的游戏高手AI时,许多在场的 AI 专家都感到有些震惊。这些 AI 靠着对游戏视频的观察来寻找出模式,然后操作控制器,并获得得分的反馈结果(高分奖励)。


在反馈中不断调整自己的控制,最后 AI 完全靠自学而不是编码学会了玩 49 种 Atari 视频游戏,其中 43 种游戏玩得比之前的 AI 都要好;并在 23 种游戏中击败了人类的职业玩家。这些游戏当中,简单的弹球和拳击游戏 AI 玩得最好,但是像经典的消砖块 Breakout 游戏也能玩得很好,甚至还学会了打开一条通道让球跑到后面去消掉砖块(参见下面视频,注意观察 AI 如何在游戏中改进自己的策略),这种技巧往往只有老练的玩家才会。许多研究人员 1 年后对他们如何做到仍感到困惑不已。不过现在他们不用困惑了,因为 DeepMind 团队现在已经在《自然》杂志上公布了自己的研究成果:Human-level control through deep reinforcement learning—通过深度强化学习实现人类水平的控制。


总的说来,DeepMind 的 AI 的设计核心是如何让计算机自行发现数据中存在的模式。其解决方案是深度神经网络与强化学习等方法的的结合。AI 并并不知道游戏规则,而是用深度神经网络来了解游戏的状态,找出哪一种行为能导致得分最高。尽管利用模拟神经网络来教电脑玩游戏(如军棋游戏)的方法已经使用了几十年,但是从未有人能像 DeepMind 团队那样以如此有用的方式结合到一起,智能系统普朗克学院的Bernhard Schölkopf主任称,其方案展现出了令人印象深刻的可适应性。


这一方面是得益于现在计算能力的提高使得 AI 可处理规模要大得多的数据集,要知道,观察 Atari 游戏相当于每秒处理 200 万像素的数据。另一方面则是得益于 DeepMind 结合了强化学习来训练 AI,而且是在高维度感觉输入中采用的端到端强化学习。相对于以往计算机会玩的游戏,如国际象棋等,这次计算机玩的游戏更接近现实世界的混沌状态。Google的智能设计师Demis Hassabis称,这是第一种能在一系列复杂任务当中与人类表现相当的算法。


那么 Google 会不会用这种 AI 来分析自己的大规模数据集呢?Hassabis 并没有给出任何肯定的说法,但称该系统对任何连续性决策任务都有用。如果我们把 Google 收集的用户数据比作像素,把广告收入比作得分的话,DeepMind 的 AI 系统一样也可以用在 Google 的核心广告业务。让 AI 去置放的广告,点击率越高就给它更高的分数,这样 AI 能够不断演进优化广告的投放算法。而伦敦大学金斯密斯学院的 Michael Cook 甚至给出了确切的数字,称 Google 已经在 7 款产品中采用了 DeepMind 的技术。其中会不会包括 Google 研发的自动汽车呢?也许用不了多久我们就能感受到有了那颗 DeepMind 支撑的产品的表现差异了。


原文发布时间为:2015-02-27

本文来自云栖社区合作伙伴“大数据文摘”,了解相关信息可以关注“BigDataDigest”微信公众号

相关文章
|
2月前
|
人工智能 文字识别 监控
|
4月前
|
机器学习/深度学习 人工智能 算法
Google DeepMind新产物: 行星级卫星嵌入数据集(10m)光学+雷达+DEM+climate...
Google 推出 Earth Engine 卫星嵌入数据集,利用 AI 将一年的多源卫星数据压缩至每个 10 米像素,实现高效地理空间分析。基于 AlphaEarth Foundations 模型,该数据集提供 64 维嵌入向量,支持相似性搜索、变化检测、自动聚类和精准分类,助力环境研究与应用。
363 0
|
11月前
|
人工智能 自然语言处理 算法
谷歌DeepMind研究再登Nature封面,隐形水印让AI无所遁形
近日,谷歌DeepMind团队在《自然》期刊上发表了一项名为SynthID-Text的研究成果。该方法通过引入隐形水印,为大型语言模型(LLM)生成的文本添加统计签名,从而实现AI生成文本的准确识别和追踪。SynthID-Text采用独特的Tournament采样算法,在保持文本质量的同时嵌入水印,显著提高了水印检测率。实验结果显示,该方法在多个LLM中表现出色,具有广泛的应用潜力。论文地址:https://www.nature.com/articles/s41586-024-08025-4。
367 26
|
5月前
|
存储 机器学习/深度学习 缓存
Google DeepMind发布MoR架构:50%参数超越传统Transformer,推理速度提升2倍
递归混合架构(MoR)通过自适应令牌级计算机制,在降低参数与计算开销的同时超越传统Transformer性能,显著提升推理效率与内存管理,为大模型发展提供新方向。
311 0
Google DeepMind发布MoR架构:50%参数超越传统Transformer,推理速度提升2倍
|
6月前
|
机器学习/深度学习 人工智能 测试技术
让大模型“言简意赅”:马里兰大学团队破解AI推理冗长之谜
说到底,这项研究解决的是一个非常实际的问题:如何让强大的AI推理模型变得更加"经济实用"。通过巧妙的训练策略,研究团队成功地让模型学会了"话不多说,直击要点"的能力。这不仅提高了计算效率,也为AI技术的普及应用扫除了一个重要障碍。对于普通用户而言,这意味着未来我们能够以更低的成本享受到更高质量的AI推理服务。对于研究者和开发者来说,这项工作为优化AI模型性能提供了新的视角和工具。归根结底,这是一项让AI变得更聪明、更高效的研究,值得我们持续关注其后续发展。
|
9月前
|
人工智能 自然语言处理
TxGemma:谷歌DeepMind革命药物研发!270亿参数AI药理学家24小时在线
谷歌推出专为药物研发设计的TxGemma大模型,具备药物特性预测、生物文献筛选、多步推理等核心能力,提供20亿至270亿参数版本,显著提升治疗开发效率。
301 7
TxGemma:谷歌DeepMind革命药物研发!270亿参数AI药理学家24小时在线
|
9月前
|
人工智能 vr&ar 图形学
谷歌DeepMind联手牛津推出Bolt3D:AI秒速3D建模革命!单GPU仅需6秒生成3D场景
牛津大学与谷歌联合推出的Bolt3D技术,能在单个GPU上仅用6.25秒从单张或多张图像生成高质量3D场景,基于高斯溅射和几何多视角扩散模型,为游戏、VR/AR等领域带来革命性突破。
358 2
谷歌DeepMind联手牛津推出Bolt3D:AI秒速3D建模革命!单GPU仅需6秒生成3D场景
|
9月前
|
机器学习/深度学习 人工智能 自然语言处理
DeepMesh:3D建模革命!清华团队让AI自动优化拓扑,1秒生成工业级网格
DeepMesh 是由清华大学和南洋理工大学联合开发的 3D 网格生成框架,基于强化学习和自回归变换器,能够生成高质量的 3D 网格,适用于虚拟环境构建、动态内容生成、角色动画等多种场景。
669 4
DeepMesh:3D建模革命!清华团队让AI自动优化拓扑,1秒生成工业级网格
|
10月前
|
人工智能 芯片 内存技术
谷歌Deepmind的CEO称Deepseek的AI模型是中国“最好的作品”,但炒作“夸大其词”
谷歌Deepmind的CEO称Deepseek的AI模型是中国“最好的作品”,但炒作“夸大其词”

热门文章

最新文章

推荐镜像

更多