MYSQL深潜 - 剖析Performance Schema内存管理

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,高可用系列 2核4GB
简介: 本文主要是通过对PFS引擎的内存管理的源码的阅读,解读PFS内存分配及释放原理,深入剖析其中存在的一些问题,以及一些改进思路。本文源代码分析基于Mysql-8.0.24版本。

image.png

作者 | 之枢
来源 | 阿里技术公众号

一 引言

MYSQL Performance schema(PFS)是mysql提供的强大的性能监控诊断工具,提供了一种能够在运行时检查server内部执行情况的特方法。PFS通过监视server内部已注册的事件来收集信息,一个事件理论上可以是server内部任何一个执行行为或资源占用,比如一个函数调用、一个系统调用wait、SQL查询中的解析或排序状态,或者是内存资源占用等。

PFS将采集到的性能数据存储在performance_schema存储引擎中,performance_schema存储引擎是一个内存表引擎,也就是所有收集的诊断信息都会保存在内存中。诊断信息的收集和存储都会带来一定的额外开销,为了尽可能小的影响业务,PFS的性能和内存管理也显得非常重要了。

本文主要是通过对PFS引擎的内存管理的源码的阅读,解读PFS内存分配及释放原理,深入剖析其中存在的一些问题,以及一些改进思路。本文源代码分析基于Mysql-8.0.24版本。

二 内存管理模型

PFS内存管理有几个关键特点:

  • 内存分配以Page为单位,一个Page内可以存储多条record

  • 系统启动时预先分配部分pages,运行期间根据需要动态增长,但page是只增不回收的模式

  • record的申请和释放都是无锁的

1 核心数据结构

PFS_buffer_scalable_container是PFS内存管理的核心数据结构,整体结构如下图:

image.png

Container中包含多个page,每个page都有固定个数的records,每个record对应一个事件对象,比如PFS_thread。每个page中的records数量是固定不变的,但page个数会随着负载增加而增长。

2 Allocate时Page选择策略

PFS_buffer_scalable_container是PFS内存管理的核心数据结构

涉及内存分配的关键数据结构如下:

PFS_PAGE_SIZE  // 每个page的大小, global_thread_container中默认为256
PFS_PAGE_COUNT // page的最大个数,global_thread_container中默认为256

class PFS_buffer_scalable_container {
  PFS_cacheline_atomic_size_t m_monotonic;            // 单调递增的原子变量,用于无锁选择page
  PFS_cacheline_atomic_size_t m_max_page_index;       // 当前已分配的最大page index
  size_t m_max_page_count;                            // 最大page个数,超过后将不再分配新page
  std::atomic< array_type *> m_pages[PFS_PAGE_COUNT];  // page数组
  native_mutex_t m_critical_section;                  // 创建新page时需要的一把锁
}

首先m_pages是一个数组,每个page都可能有free的records,也有可能整个page都是busy的,Mysql采用了比较简单的策略,轮训挨个尝试每个page是否有空闲,直到分配成功。如果轮训所有pages依然没有分配成功,这个时候就会创建新的page来扩充,直到达到page数的上限。

轮训并不是每次都是从第1个page开始寻找,而是使用原子变量m_monotonic记录的位置开始查找,m_monotonic在每次在page中分配失败是加1。

核心简化代码如下:

value_type *allocate(pfs_dirty_state *dirty_state) {
  current_page_count = m_max_page_index.m_size_t.load();

  monotonic = m_monotonic.m_size_t.load();
  monotonic_max = monotonic + current_page_count;
  while (monotonic < monotonic_max) {
    index = monotonic % current_page_count;
    array = m_pages[index].load();
    pfs = array->allocate(dirty_state);
    if  (pfs) {
      // 分配成功返回
      return pfs;
    } else {
      // 分配失败,尝试下一个page, 
      // 因为m_monotonic是并发累加的,这里有可能本地monotonic变量并不是线性递增的,有可能是从1 直接变为 3或更大,
      // 所以当前while循环并不是严格轮训所有page,很大可能是跳着尝试,换者说这里并发访问下大家一起轮训所有的page。
      // 这个算法其实是有些问题的,会导致某些page被跳过忽略,从而加剧扩容新page的几率,后面会详细分析。
      monotonic = m_monotonic.m_size_t++;
    }
  }

  // 轮训所有Page后没有分配成功,如果没有达到上限的话,开始扩容page
  while (current_page_count < m_max_page_count) {
    // 因为是并发访问,为了避免同时去创建新page,这里有一个把同步锁,也是整个PFS内存分配唯一的锁
    native_mutex_lock(&m_critical_section);
    // 拿锁成功,如果array已经不为null,说明已经被其它线程创建成功
    array = m_pages[current_page_count].load();
    if (array == nullptr) {
      // 抢到了创建page的责任
      m_allocator->alloc_array(array);
      m_pages[current_page_count].store(array);
      ++m_max_page_index.m_size_t;
    }
    native_mutex_unlock(&m_critical_section);

    // 在新的page中再次尝试分配
    pfs = array->allocate(dirty_state);
    if (pfs) {
      // 分配成功并返回
      return pfs;
    }
    // 分配失败,继续尝试创建新的page直到上限
  }
}

我们再详细分析下轮训page策略的问题,因为m_momotonic原子变量的累加是并发的,会导致一些page被跳过轮训它,从而加剧了扩容新page的几率。

举一个极端一些的例子,比较容易说明问题,假设当前一共有4个page,第1、4个page已满无可用record,第2、3个page有可用record。

当同时来了4个线程并发Allocate请求,同时拿到了的m_monotonic=0.

monotonic = m_monotonic.m_size_t.load();

这个时候所有线程尝试从第1个page分配record都会失败(因为第1个page是无可用record),然后累加去尝试下一个page

monotonic = m_monotonic.m_size_t++;

这个时候问题就来了,因为原子变量++是返回最新的值,4个线程++成功是有先后顺序的,第1个++的线程后monotonic值为2,第2个++的线程为3,以次类推。这样就看到第3、4个线程跳过了page2和page3,导致3、4线程会轮训结束失败进入到创建新page的流程里,但这个时候page2和page3里是有空闲record可以使用的。

虽然上述例子比较极端,但在Mysql并发访问中,同时申请PFS内存导致跳过一部分page的情况应该还是非常容易出现的。

3 Page内Record选择策略

PFS_buffer_default_array是每个Page维护一组records的管理类。

关键数据结构如下:

class PFS_buffer_default_array {
PFS_cacheline_atomic_size_t m_monotonic;      // 单调递增原子变量,用来选择free的record
size_t m_max;                                 // record的最大个数
T *m_ptr;                                     // record对应的PFS对象,比如PFS_thread
}

每个Page其实就是一个定长的数组,每个record对象有3个状态FREE,DIRTY, ALLOCATED,FREE表示空闲record可以使用,ALLOCATED是已分配成功的,DIRTY是一个中间状态,表示已被占用但还没分配成功。

Record的选择本质就是轮训查找并抢占状态为free的record的过程。

核心简化代码如下:

value_type *allocate(pfs_dirty_state *dirty_state) {
  // 从m_monotonic记录的位置开始尝试轮序查找
  monotonic = m_monotonic.m_size_t++;
  monotonic_max = monotonic + m_max;

  while (monotonic < monotonic_max) {
    index = monotonic % m_max;
    pfs = m_ptr + index;

    // m_lock是pfs_lock结构,free/dirty/allocated三状态是由这个数据结构来维护的
    // 后面会详细介绍它如何实现原子状态迁移的
    if (pfs->m_lock.free_to_dirty(dirty_state)) {
      return pfs;
    }
    // 当前record不为free,原子变量++尝试下一个
    monotonic = m_monotonic.m_size_t++;
  }
}

选择record的主体主体流程和选择page基本相似,不同的是page内record数量是固定不变的,所以没有扩容的逻辑。

当然选择策略相同,也会有同样的问题,这里的m_monotonic原子变量++是多线程并发的,同样如果并发大的场景下会有record被跳过选择了,这样导致page内部即便有free的record也可能没有被选中。

所以也就是page选择即便是没有被跳过,page内的record也有几率被跳过而选不中,雪上加霜,更加加剧了内存的增长。

4 pfs_lock

每个record都有一个pfs_lock,来维护它在page中的分配状态(free/dirty/allocated),以及version信息。

关键数据结构:

struct pfs_lock {
std::atomic m_version_state;
}

pfs_lock使用1个32位无符号整型来保存version+state信息,格式如下:

image.png

state
低2位字节表示分配状态。

state PFS_LOCK_FREE = 0x00
state PFS_LOCK_DIRTY = 0x01
state PFS_LOCK_ALLOCATED = 0x11

version

初始version为0,每分配成功一次加1,version就能表示该record被分配成功的次数
主要看一下状态迁移代码:

// 下面3个宏主要就是用来位操作的,方便操作state或version
#define VERSION_MASK 0xFFFFFFFC
#define STATE_MASK 0x00000003
#define VERSION_INC 4

bool free_to_dirty(pfs_dirty_state *copy_ptr) {
  uint32 old_val = m_version_state.load();

  // 判断当前state是否为FREE,如果不是,直接返回失败
  if ((old_val & STATE_MASK) != PFS_LOCK_FREE) {
    return false;
  }

  uint32 new_val = (old_val & VERSION_MASK) + PFS_LOCK_DIRTY;

  // 当前state为free,尝试将state修改为dirty,atomic_compare_exchange_strong属于乐观锁,多个线程可能同时
  // 修改该原子变量,但只有1个修改成功。
  bool pass =
      atomic_compare_exchange_strong(&m_version_state, &old_val, new_val);

  if (pass) {
    // free to dirty 成功
    copy_ptr->m_version_state = new_val;
  }

  return pass;
}

void dirty_to_allocated(const pfs_dirty_state *copy) {
  /* Make sure the record was DIRTY. */
  assert((copy->m_version_state & STATE_MASK) == PFS_LOCK_DIRTY);
  /* Increment the version, set the ALLOCATED state */
  uint32 new_val = (copy->m_version_state & VERSION_MASK) + VERSION_INC +
                   PFS_LOCK_ALLOCATED;

  m_version_state.store(new_val);
}

状态迁移过程还是比较好理解的, 由dirty_to_allocated和allocated_to_free的逻辑是更简单的,因为只有record状态是free时,它的状态迁移是存在并发多写问题的,一旦state变为dirty,当前record相当于已经被某一个线程占有,其它线程不会再尝试操作该record了。

version的增长是在state变为PFS_LOCK_ALLOCATED时

5 PFS内存释放

PFS内存释放就比较简单了,因为每个record都记录了自己所在的container和page,调用deallocate接口,最终将状态置为free就完成了。

最底层都会进入到pfs_lock来更新状态:

struct pfs_lock {
  void allocated_to_free(void) {
    /*
      If this record is not in the ALLOCATED state and the caller is trying
      to free it, this is a bug: the caller is confused,
      and potentially damaging data owned by another thread or object.
    */
    uint32 copy = copy_version_state();
    /* Make sure the record was ALLOCATED. */
    assert(((copy & STATE_MASK) == PFS_LOCK_ALLOCATED));
    /* Keep the same version, set the FREE state */
    uint32 new_val = (copy & VERSION_MASK) + PFS_LOCK_FREE;

    m_version_state.store(new_val);
  }
}

三 内存分配的优化

前面我们分析到无论是page还是record都有几率出现跳过轮训的问题,即便是缓存中有free的成员也会出现分配不成功,导致创建更多的page,占用更多的内存。最主要的问题是这些内存一旦分配就不会被释放。

为了提升PFS内存命中率,尽量避免上述问题,有一些思路如下:

  while (monotonic < monotonic_max) {
    index = monotonic % current_page_count;
    array = m_pages[index].load();
    pfs = array->allocate(dirty_state);
    if  (pfs) {
       // 记录分配成功的index
       m_monotonic.m_size_t.store(index);
      return pfs;
    } else {
      // 局部变量递增,避免掉并发累加而跳过某些pages
      monotonic++;
    }
  }

另外一点,每次查找都是从最近一次分配成功的位置开始,这样必然导致并发访问的冲突,因为大家都从同一个位置开始找,起始查找位置应该加入一定的随机性,这样可以避免大量的冲突重试。

总结如下:

  1. 每次Allocate是从最近一次分配成功的index开始查找,或者随机位置开始查找

  2. 每个Allocate严格轮训所有pages或records

四 内存释放的优化

PFS内存释放的最大的问题就是一旦创建出的内存就得不到释放,直到shutdown。如果遇到热点业务,在业务高峰阶段分配了很多page的内存,在业务低峰阶段依然得不到释放。

要实现定期检测回收内存,又不影响内存分配的效率,实现一套无锁的回收机制还是比较复杂的。

主要有如下几点需要考虑:

  1. 释放肯定是要以page为单位的,也就是释放的page内的所有records都必须保证都为free,而且要保证待free的page不会再被分配到

  2. 内存分配是随机的,整体上内存是可以回收的,但可能每个page都有一些busy的,如何更优的协调这种情况

  3. 释放的阈值怎么定,也要避免频繁分配+释放的问题

针对PFS内存释放的优化,PolarDB已经开发并提供了定期回收PFS内存的特性,鉴于本篇幅的限制,留在后续再介绍了。

五 关于我们

PolarDB 是阿里巴巴自主研发的云原生分布式关系型数据库,于2020年进入Gartner全球数据库Leader象限,并获得了2020年中国电子学会颁发的科技进步一等奖。PolarDB 基于云原生分布式数据库架构,提供大规模在线事务处理能力,兼具对复杂查询的并行处理能力,在云原生分布式数据库领域整体达到了国际领先水平,并且得到了广泛的市场认可。在阿里巴巴集团内部的最佳实践中,PolarDB还全面支撑了2020年天猫双十一,并刷新了数据库处理峰值记录,高达1.4亿TPS。欢迎有志之士加入我们,简历请投递到zetao.wzt@alibaba-inc.com,期待与您共同打造世界一流的下一代云原生分布式关系型数据库。

参考:

[1] MySQL Performance Schema
https://dev.mysql.com/doc/refman/8.0/en/performance-schema.html

[2] MySQL · 最佳实践 · 今天你并行了吗?---洞察PolarDB 8.0之并行查询
http://mysql.taobao.org/monthly/2019/11/01/

[3] Source code mysql / mysql-server 8.0.24
https://github.com/mysql/mysql-server/tree/mysql-8.0.24


高级应用技能进阶

本课程您将进行云开发高级应用的实战,包括几种常见应用的开发和部署,例如开Web应用和小程序等,基于开源应用快速创建和云原生的DevOps实践。1. Web、小程序和开源应用的上手实践;2. 云原生DevOps的实践;3. 与本地开发流程的集成。

相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
3月前
|
缓存 监控 关系型数据库
如何查看MySQL使用的内存
如何查看MySQL使用的内存
173 1
|
3月前
|
存储 缓存 监控
深入了解MySQL内存管理:如何查看MySQL使用的内存
深入了解MySQL内存管理:如何查看MySQL使用的内存
476 1
|
3月前
|
SQL 监控 关系型数据库
如何查看MySQL使用的内存
综合运用上述方法,您可以全方位地监控和管理MySQL的内存使用。从简单查看配置到深入分析实时内存占用,每种方法都有其适用场景和优势。定期检查和调整MySQL的内存配置,对于维持数据库性能和稳定性至关重要。
560 0
|
5月前
|
SQL 缓存 关系型数据库
MySQL 深潜 - Semijoin 丛林小道全览
作者深入内核讲述了 MySQL semijoin 从识别到优化器根据代价决定最优执行策略,以及执行方式的全过程,掌握 MySQL semijoin 这一篇就够了!
|
5月前
|
关系型数据库 MySQL
MySQl优化:使用 jemalloc 分配内存
MySQl优化:使用 jemalloc 分配内存
|
5月前
|
SQL 存储 关系型数据库
实时计算 Flink版产品使用问题之同步MySQL多张表的过程中,内存释放依赖于什么
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
6月前
|
SQL 缓存 关系型数据库
(十二)MySQL之内存篇:深入探寻数据库内存与Buffer Pool的奥妙!
MySQL是基于磁盘工作的,这句几乎刻在了每个后端程序员DNA里,但它真的对吗?其实答案并不能盖棺定论,你可以说MySQL是基于磁盘实现的,这点我十分认同,但要说MySQL是基于磁盘工作,这点我则抱否定的态度,至于为什么呢?这跟咱们本章的主角:Buffer Pool有关,Buffer Pool是什么?还记得咱们在《MySQL架构篇》中聊到的缓存和缓冲区么,其中所提到的写入缓冲区就位于Buffer Pool中。
468 1
|
2月前
|
缓存 Prometheus 监控
Elasticsearch集群JVM调优设置合适的堆内存大小
Elasticsearch集群JVM调优设置合适的堆内存大小
359 1
|
1月前
|
存储 监控 算法
深入探索Java虚拟机(JVM)的内存管理机制
本文旨在为读者提供对Java虚拟机(JVM)内存管理机制的深入理解。通过详细解析JVM的内存结构、垃圾回收算法以及性能优化策略,本文不仅揭示了Java程序高效运行背后的原理,还为开发者提供了优化应用程序性能的实用技巧。不同于常规摘要仅概述文章大意,本文摘要将简要介绍JVM内存管理的关键点,为读者提供一个清晰的学习路线图。
|
2月前
|
Java
JVM内存参数
-Xmx[]:堆空间最大内存 -Xms[]:堆空间最小内存,一般设置成跟堆空间最大内存一样的 -Xmn[]:新生代的最大内存 -xx[use 垃圾回收器名称]:指定垃圾回收器 -xss:设置单个线程栈大小 一般设堆空间为最大可用物理地址的百分之80

热门文章

最新文章