Zookeeper详细使用解析!分布式架构中的协调服务框架最佳选型实践

本文涉及的产品
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
简介: 本文主要介绍了Zookeeper实现分布式协调服务,解决分布式环境中服务的协调和管理问题。分析了Zookeeper实现分布式锁的方式,详细介绍Zookeeper中的数据模型和特点,Zookeeper中一致性的实现方式。通过使用Docker安装Zookeeper,说明了Zookeeper进行分布式协调服务时的三种工作模式以及三种使用的端口。

Zookeeper概念

  • Zookeeper是分布式协调服务,用于管理大型主机,在分布式环境中协调和管理服务是很复杂的过程,Zookeeper通过简单的架构和API解决了这个问题

Zookeeper实现分布式锁

分布式锁三要素:
加锁
解锁
锁超时
  • Zookeeper数据结构类似树结构,由节点Znode组成
  • Znode分为四种类型:

    • 持久节点(PERSISTENT): 默认节点类型,创建节点的客户端与Zookeeper断开连接后,节点依旧存在
    • 持久节点顺序节点(PERSISTENT_SEQUENTIAL): 持久节点顺序节点就是在创建持久节点时,Zookeeper根据创建节点的时间顺序给节点进行编号
    • 临时节点(EPHEMERAL): 创建节点的客户端与Zookeeper断开连接后,临时节点会被删除
    • 临时节点顺序节点(EPHEMERAL_SEQUENTIAL): 临时节点顺序节点就是在创建临时节点时,Zookeeper根据创建节点的时间顺序给节点进行编号
    • 应用Zookeeper的临时顺序节点,实现分布式锁

Zookeeper与Redis分布式锁比较:

分布式锁 Zookeeper Redis
优点 1.有封装好的框架,容易实现
2.有等待锁队列,提升抢锁的效率
Set和Del指令性能高
缺点 添加和删除节点性能低 1.实现复杂,需要考虑原子性,误删,锁超时问题
2.没有等待锁的队列,只能客户端自旋来等锁,效率低

Zookeeper的数据模型

  • 类似数据结构中的树,文件系统中的目录
  • Zookeeper的数据存储基于节点Znode
  • Znode的引用方式是路径引用,每一个Znode节点拥有唯一的路径

Znode中的元素

  • data: Znode存储的数据信息
  • ACL: 记录Znode的访问权限,即哪些进程和IP可以访问本节点
  • stat: Znode的各种元数据(数据的数据)
  • child: 当前节点的子节点引用

Zookeeper的应用场景是读多写少的应用场景:Znode不用来存储大规模的业务数据,用于存储少量的状态和配置信息(Znode存储数据不能超过1MB)

Zookeeper基本操作

  • 创建节点:create
  • 删除节点:delete
  • 判断节点是否存在:exists
  • 获得一个节点的数据:getData
  • 设置一个节点的数据:setData
  • 获取节点下的所有子节点:getChildren

exists,getData,getChildren属于读操作,Zookeeper客户端在请求读操作时,可以选择是否设置watch

Zookeeper事件通知

  • Watch可以理解成注册在特定Znode上的触发器
  • 当Znode发生改变的时候,调用create,delete,setData方法,将会触发Znode上注册的对应事件,请求的Watch的客户端会接收到异步通知
  • Zookeeper事件通知的交互过程:

    • 客户端调用getData方法,watch的参数是true,服务端接收到请求,返回节点数据,在对应的Hash表中插入被Watch的Znode路径以及Watcher列表
    • 当被Watch的Znode删除,服务端会查找Hash表,找到该Znode对应的所有Watcher,异步通知客户端,并且删除Hash表中对应的key-value

Zookeeper的一致性

  • Zookeeper Service集群是一主多从结构
  • 在更新数据时,首先更新到主服务器,再同步到从服务器
  • 在读数据时,直接读取任意节点
  • 采用ZAB协议,为了保证主从节点数据的一致性

ZAB协议

  • ZAB(Zookeeper Automic Broadcast): 解决Zookeeper集群崩溃恢复,主从数据同步问题
  • ZAB三种节点状态:

    • Looking:选举状态
    • Following:Following节点(从节点)所处的状态
    • Leading:Leading(主节点)所处的状态
  • 最大ZXID: 节点本地的最新事务编号,包含epoch计数两部分

ZAB集群崩溃恢复

  • 当Zookeeper的主节点服务器宕机后,集群就会进行崩溃恢复,分成三个阶段:

    • Leader election(选举阶段):

      • 集群中的节点处于Looking状态,各自向其它节点发起投票,投票当中包含自己服务器的ID和最新事务ID(ZXID)
      • 节点用自身的ZXID和其它节点收到的ZXID作比较,如果发现其它节点的ZXID比自身大,即数据比自己新,就重新发起投票,投票给目前已知最大ZXID所属节点
      • 每次投票后,服务器都会统计投票数量,判断是否某个节点得到半数以上的投票,这样的节点将会成为准Leader,状态变为Leading,其它节点状态变为Following
    • Discovery(发现阶段):

      • 在从节点发现最新的ZXID和事务日志,目的是为了防止在意外情况,选举产生多个Leader
      • Leader接收所有Follower发送的最新的epoch值,Leader从中选出最大的epoch,基于此值+1,生成新的epoch分发给各个Follower
      • 各个Follower接收到最新的epoch,返回ACK(响应码)给Leader,带上各自最大的ZXID和历史事务日志,Leader选出最大的ZXID,并更新自身历史日志
    • Synchronization(同步阶段):

      • 将Leader收集得到的最新历史事务日志,同步给集群中的所有Follower,只有当半数Follower同步成功,这个准Leader才能成为正式Leader.集群崩溃恢复正式完成

ZAB主从数据同步

  • Broadcast

Zookeeper常规情况下更新数据的时候,由Leader广播到所有的Follower:

  • 客户端发出写入数据请求给任意的Follower
  • Follower把写入数据请求转发给Leader
  • Leader采取二阶段提交方式:(先保留提交日志,再提交数据)先发送Propose广播给Follower
  • Follower接收到Propose消息,写入日志成功后,返回ACK消息给Leader
  • Leader接收到半数以上的ACK消息,返回成功给客户端,并且广播commit请求给Follower
数据一致性:
强一致性
弱一致性
顺序一致性:Zookeeper,依靠事务ID和版本号,保证数据的更新和读取是有序的

Zookeeper应用场景

  • 分布式锁: 应用Zookeeper的临时顺序节点,实现分布式锁
  • 服务注册与发现: 利用Znode和Watcher,实现分布式服务注册与发现,如Dubbo
  • 共享配置和状态信息: Redis的分布式解决方案Codls,利用Zookeeper存放数据路由表和codls-proxy节点元信息,同时colds-config发起的命令都会通过Zookeeper同步到各个存活的codls-proxy
  • 高可用实现: Kafka,HBase,Hadoop都依靠Zookeeper同步节点信息,实现高可用

基于Docker创建Zookeeper

1.创建docker-compose.yml
zoo:
    image: zookeeper
    restart: always
    hostname: zoo
    ports:
        - 2181:2181
    environment:
        - ZOO_MY_ID: 1
        - ZOO_SERVER: server.1(id)=zoo(IP):2888:3888
2.执行docker-compose up -d

Zookeeper三种工作模式

  • 单机模式: 存在单点故障
  • 集群模式: 在多台服务器上部署Zookeeper集群
  • 伪集群模式: 在同一台服务器上运行多个Zookeeper实例,仍然有单点故障问题,其中配置的端口号要错开

Zookeeper三种端口号

  • 2181: 客户端连接Zookeeper集群使用的监听端口号
  • 3888: 选举Leader使用
  • 2888: 集群内机器通讯使用(Leader和Follower之间数据同步使用的端口号,Leader监听此端口)
相关实践学习
基于MSE实现微服务的全链路灰度
通过本场景的实验操作,您将了解并实现在线业务的微服务全链路灰度能力。
相关文章
|
13天前
|
监控 负载均衡 Cloud Native
ZooKeeper分布式协调服务详解:面试经验与必备知识点解析
【4月更文挑战第9天】本文深入剖析ZooKeeper分布式协调服务原理,涵盖核心概念如Server、Client、ZNode、ACL、Watcher,以及ZAB协议在一致性、会话管理、Leader选举中的作用。讨论ZooKeeper数据模型、操作、会话管理、集群部署与管理、性能调优和监控。同时,文章探讨了ZooKeeper在分布式锁、队列、服务注册与发现等场景的应用,并在面试方面分析了与其它服务的区别、实战挑战及解决方案。附带Java客户端实现分布式锁的代码示例,助力提升面试表现。
30 2
|
14天前
|
存储 人工智能 PyTorch
基于PyTorch/XLA的高效分布式训练框架
基于PyTorch/XLA的高效分布式训练框架
25 2
|
1月前
|
人工智能 算法 PyTorch
TorchAcc:基于 TorchXLA 的分布式训练框架
阿里云研究员、阿里云人工智能平台 PAI 技术负责人--林伟在GTC 2024 大会 China AI Day 线上中文演讲专场上介绍了TorchAcc,这是一个基于 PyTorch/XLA 的大模型分布式训练框架。
|
27天前
|
消息中间件 算法 Java
【亿级数据专题】「分布式服务框架」 盘点本年度我们探索服务的保障容量的三大关键方案实现
【亿级数据专题】「分布式服务框架」 盘点本年度我们探索服务的保障容量的三大关键方案实现
185 0
|
1天前
|
Dubbo Java 应用服务中间件
Java从入门到精通:3.2.2分布式与并发编程——了解分布式系统的基本概念,学习使用Dubbo、Spring Cloud等分布式框架
Java从入门到精通:3.2.2分布式与并发编程——了解分布式系统的基本概念,学习使用Dubbo、Spring Cloud等分布式框架
|
12天前
|
SQL API 数据库
Python中的SQLAlchemy框架:深度解析与实战应用
【4月更文挑战第13天】在Python的众多ORM(对象关系映射)框架中,SQLAlchemy以其功能强大、灵活性和易扩展性脱颖而出,成为许多开发者首选的数据库操作工具。本文将深入探讨SQLAlchemy的核心概念、功能特点以及实战应用,帮助读者更好地理解和使用这一框架。
|
13天前
|
机器学习/深度学习 分布式计算 BI
Flink实时流处理框架原理与应用:面试经验与必备知识点解析
【4月更文挑战第9天】本文详尽探讨了Flink实时流处理框架的原理,包括运行时架构、数据流模型、状态管理和容错机制、资源调度与优化以及与外部系统的集成。此外,还介绍了Flink在实时数据管道、分析、数仓与BI、机器学习等领域的应用实践。同时,文章提供了面试经验与常见问题解析,如Flink与其他系统的对比、实际项目挑战及解决方案,并展望了Flink的未来发展趋势。附带Java DataStream API代码样例,为学习和面试准备提供了实用素材。
35 0
|
27天前
|
存储 Java 应用服务中间件
【分布式技术专题】「架构实践于案例分析」盘点互联网应用服务中常用分布式事务(刚性事务和柔性事务)的原理和方案
【分布式技术专题】「架构实践于案例分析」盘点互联网应用服务中常用分布式事务(刚性事务和柔性事务)的原理和方案
50 0
|
3月前
|
消息中间件 Java 网络安全
JAVAEE分布式技术之Zookeeper的第一次课
JAVAEE分布式技术之Zookeeper的第一次课
70 0
|
1月前
|
监控 NoSQL Java
Zookeeper分布式锁
Zookeeper分布式锁
90 1

热门文章

最新文章

推荐镜像

更多