Zookeeper详细使用解析!分布式架构中的协调服务框架最佳选型实践

本文涉及的产品
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
注册配置 MSE Nacos/ZooKeeper,118元/月
简介: 本文主要介绍了Zookeeper实现分布式协调服务,解决分布式环境中服务的协调和管理问题。分析了Zookeeper实现分布式锁的方式,详细介绍Zookeeper中的数据模型和特点,Zookeeper中一致性的实现方式。通过使用Docker安装Zookeeper,说明了Zookeeper进行分布式协调服务时的三种工作模式以及三种使用的端口。

Zookeeper概念

  • Zookeeper是分布式协调服务,用于管理大型主机,在分布式环境中协调和管理服务是很复杂的过程,Zookeeper通过简单的架构和API解决了这个问题

Zookeeper实现分布式锁

分布式锁三要素:
加锁
解锁
锁超时
  • Zookeeper数据结构类似树结构,由节点Znode组成
  • Znode分为四种类型:

    • 持久节点(PERSISTENT): 默认节点类型,创建节点的客户端与Zookeeper断开连接后,节点依旧存在
    • 持久节点顺序节点(PERSISTENT_SEQUENTIAL): 持久节点顺序节点就是在创建持久节点时,Zookeeper根据创建节点的时间顺序给节点进行编号
    • 临时节点(EPHEMERAL): 创建节点的客户端与Zookeeper断开连接后,临时节点会被删除
    • 临时节点顺序节点(EPHEMERAL_SEQUENTIAL): 临时节点顺序节点就是在创建临时节点时,Zookeeper根据创建节点的时间顺序给节点进行编号
    • 应用Zookeeper的临时顺序节点,实现分布式锁

Zookeeper与Redis分布式锁比较:

分布式锁 Zookeeper Redis
优点 1.有封装好的框架,容易实现
2.有等待锁队列,提升抢锁的效率
Set和Del指令性能高
缺点 添加和删除节点性能低 1.实现复杂,需要考虑原子性,误删,锁超时问题
2.没有等待锁的队列,只能客户端自旋来等锁,效率低

Zookeeper的数据模型

  • 类似数据结构中的树,文件系统中的目录
  • Zookeeper的数据存储基于节点Znode
  • Znode的引用方式是路径引用,每一个Znode节点拥有唯一的路径

Znode中的元素

  • data: Znode存储的数据信息
  • ACL: 记录Znode的访问权限,即哪些进程和IP可以访问本节点
  • stat: Znode的各种元数据(数据的数据)
  • child: 当前节点的子节点引用

Zookeeper的应用场景是读多写少的应用场景:Znode不用来存储大规模的业务数据,用于存储少量的状态和配置信息(Znode存储数据不能超过1MB)

Zookeeper基本操作

  • 创建节点:create
  • 删除节点:delete
  • 判断节点是否存在:exists
  • 获得一个节点的数据:getData
  • 设置一个节点的数据:setData
  • 获取节点下的所有子节点:getChildren

exists,getData,getChildren属于读操作,Zookeeper客户端在请求读操作时,可以选择是否设置watch

Zookeeper事件通知

  • Watch可以理解成注册在特定Znode上的触发器
  • 当Znode发生改变的时候,调用create,delete,setData方法,将会触发Znode上注册的对应事件,请求的Watch的客户端会接收到异步通知
  • Zookeeper事件通知的交互过程:

    • 客户端调用getData方法,watch的参数是true,服务端接收到请求,返回节点数据,在对应的Hash表中插入被Watch的Znode路径以及Watcher列表
    • 当被Watch的Znode删除,服务端会查找Hash表,找到该Znode对应的所有Watcher,异步通知客户端,并且删除Hash表中对应的key-value

Zookeeper的一致性

  • Zookeeper Service集群是一主多从结构
  • 在更新数据时,首先更新到主服务器,再同步到从服务器
  • 在读数据时,直接读取任意节点
  • 采用ZAB协议,为了保证主从节点数据的一致性

ZAB协议

  • ZAB(Zookeeper Automic Broadcast): 解决Zookeeper集群崩溃恢复,主从数据同步问题
  • ZAB三种节点状态:

    • Looking:选举状态
    • Following:Following节点(从节点)所处的状态
    • Leading:Leading(主节点)所处的状态
  • 最大ZXID: 节点本地的最新事务编号,包含epoch计数两部分

ZAB集群崩溃恢复

  • 当Zookeeper的主节点服务器宕机后,集群就会进行崩溃恢复,分成三个阶段:

    • Leader election(选举阶段):

      • 集群中的节点处于Looking状态,各自向其它节点发起投票,投票当中包含自己服务器的ID和最新事务ID(ZXID)
      • 节点用自身的ZXID和其它节点收到的ZXID作比较,如果发现其它节点的ZXID比自身大,即数据比自己新,就重新发起投票,投票给目前已知最大ZXID所属节点
      • 每次投票后,服务器都会统计投票数量,判断是否某个节点得到半数以上的投票,这样的节点将会成为准Leader,状态变为Leading,其它节点状态变为Following
    • Discovery(发现阶段):

      • 在从节点发现最新的ZXID和事务日志,目的是为了防止在意外情况,选举产生多个Leader
      • Leader接收所有Follower发送的最新的epoch值,Leader从中选出最大的epoch,基于此值+1,生成新的epoch分发给各个Follower
      • 各个Follower接收到最新的epoch,返回ACK(响应码)给Leader,带上各自最大的ZXID和历史事务日志,Leader选出最大的ZXID,并更新自身历史日志
    • Synchronization(同步阶段):

      • 将Leader收集得到的最新历史事务日志,同步给集群中的所有Follower,只有当半数Follower同步成功,这个准Leader才能成为正式Leader.集群崩溃恢复正式完成

ZAB主从数据同步

  • Broadcast

Zookeeper常规情况下更新数据的时候,由Leader广播到所有的Follower:

  • 客户端发出写入数据请求给任意的Follower
  • Follower把写入数据请求转发给Leader
  • Leader采取二阶段提交方式:(先保留提交日志,再提交数据)先发送Propose广播给Follower
  • Follower接收到Propose消息,写入日志成功后,返回ACK消息给Leader
  • Leader接收到半数以上的ACK消息,返回成功给客户端,并且广播commit请求给Follower
数据一致性:
强一致性
弱一致性
顺序一致性:Zookeeper,依靠事务ID和版本号,保证数据的更新和读取是有序的

Zookeeper应用场景

  • 分布式锁: 应用Zookeeper的临时顺序节点,实现分布式锁
  • 服务注册与发现: 利用Znode和Watcher,实现分布式服务注册与发现,如Dubbo
  • 共享配置和状态信息: Redis的分布式解决方案Codls,利用Zookeeper存放数据路由表和codls-proxy节点元信息,同时colds-config发起的命令都会通过Zookeeper同步到各个存活的codls-proxy
  • 高可用实现: Kafka,HBase,Hadoop都依靠Zookeeper同步节点信息,实现高可用

基于Docker创建Zookeeper

1.创建docker-compose.yml
zoo:
    image: zookeeper
    restart: always
    hostname: zoo
    ports:
        - 2181:2181
    environment:
        - ZOO_MY_ID: 1
        - ZOO_SERVER: server.1(id)=zoo(IP):2888:3888
2.执行docker-compose up -d

Zookeeper三种工作模式

  • 单机模式: 存在单点故障
  • 集群模式: 在多台服务器上部署Zookeeper集群
  • 伪集群模式: 在同一台服务器上运行多个Zookeeper实例,仍然有单点故障问题,其中配置的端口号要错开

Zookeeper三种端口号

  • 2181: 客户端连接Zookeeper集群使用的监听端口号
  • 3888: 选举Leader使用
  • 2888: 集群内机器通讯使用(Leader和Follower之间数据同步使用的端口号,Leader监听此端口)
相关实践学习
基于MSE实现微服务的全链路灰度
通过本场景的实验操作,您将了解并实现在线业务的微服务全链路灰度能力。
相关文章
|
1天前
|
存储 Prometheus Cloud Native
分布式系统架构6:链路追踪
本文深入探讨了分布式系统中的链路追踪理论,涵盖追踪与跨度的概念、追踪系统的模块划分及数据收集的三种方式。链路追踪旨在解决复杂分布式系统中请求流转路径不清晰的问题,帮助快速定位故障和性能瓶颈。文中介绍了基于日志、服务探针和边车代理的数据收集方法,并简述了OpenTracing、OpenCensus和OpenTelemetry等链路追踪协议的发展历程及其特点。通过理解这些概念,可以更好地掌握开源链路追踪框架的使用。
54 41
|
27天前
|
运维 监控 持续交付
微服务架构解析:跨越传统架构的技术革命
微服务架构(Microservices Architecture)是一种软件架构风格,它将一个大型的单体应用拆分为多个小而独立的服务,每个服务都可以独立开发、部署和扩展。
163 36
微服务架构解析:跨越传统架构的技术革命
|
27天前
|
机器学习/深度学习 人工智能 算法
深入解析图神经网络:Graph Transformer的算法基础与工程实践
Graph Transformer是一种结合了Transformer自注意力机制与图神经网络(GNNs)特点的神经网络模型,专为处理图结构数据而设计。它通过改进的数据表示方法、自注意力机制、拉普拉斯位置编码、消息传递与聚合机制等核心技术,实现了对图中节点间关系信息的高效处理及长程依赖关系的捕捉,显著提升了图相关任务的性能。本文详细解析了Graph Transformer的技术原理、实现细节及应用场景,并通过图书推荐系统的实例,展示了其在实际问题解决中的强大能力。
149 30
|
12天前
|
设计模式 存储 算法
分布式系统架构5:限流设计模式
本文是小卷关于分布式系统架构学习的第5篇,重点介绍限流器及4种常见的限流设计模式:流量计数器、滑动窗口、漏桶和令牌桶。限流旨在保护系统免受超额流量冲击,确保资源合理分配。流量计数器简单但存在边界问题;滑动窗口更精细地控制流量;漏桶平滑流量但配置复杂;令牌桶允许突发流量。此外,还简要介绍了分布式限流的概念及实现方式,强调了限流的代价与收益权衡。
56 11
|
14天前
|
设计模式 监控 Java
分布式系统架构4:容错设计模式
这是小卷对分布式系统架构学习的第4篇文章,重点介绍了三种常见的容错设计模式:断路器模式、舱壁隔离模式和重试模式。断路器模式防止服务故障蔓延,舱壁隔离模式通过资源隔离避免全局影响,重试模式提升短期故障下的调用成功率。文章还对比了这些模式的优缺点及适用场景,并解释了服务熔断与服务降级的区别。尽管技术文章阅读量不高,但小卷坚持每日更新以促进个人成长。
43 11
|
15天前
|
消息中间件 存储 安全
分布式系统架构3:服务容错
分布式系统因其复杂性,故障几乎是必然的。那么如何让系统在不可避免的故障中依然保持稳定?本文详细介绍了分布式架构中7种核心的服务容错策略,包括故障转移、快速失败、安全失败等,以及它们在实际业务场景中的应用。无论是支付场景的快速失败,还是日志采集的安全失败,每种策略都有自己的适用领域和优缺点。此外,文章还为技术面试提供了解题思路,助你在关键时刻脱颖而出。掌握这些策略,不仅能提升系统健壮性,还能让你的技术栈更上一层楼!快来深入学习,走向架构师之路吧!
51 11
|
17天前
|
自然语言处理 负载均衡 Kubernetes
分布式系统架构2:服务发现
服务发现是分布式系统中服务实例动态注册和发现机制,确保服务间通信。主要由注册中心和服务消费者组成,支持客户端和服务端两种发现模式。注册中心需具备高可用性,常用框架有Eureka、Zookeeper、Consul等。服务注册方式包括主动注册和被动注册,核心流程涵盖服务注册、心跳检测、服务发现、服务调用和注销。
52 12
|
29天前
|
消息中间件 架构师 数据库
本地消息表事务:10Wqps 高并发分布式事务的 终极方案,大厂架构师的 必备方案
45岁资深架构师尼恩分享了一篇关于分布式事务的文章,详细解析了如何在10Wqps高并发场景下实现分布式事务。文章从传统单体架构到微服务架构下分布式事务的需求背景出发,介绍了Seata这一开源分布式事务解决方案及其AT和TCC两种模式。随后,文章深入探讨了经典ebay本地消息表方案,以及如何使用RocketMQ消息队列替代数据库表来提高性能和可靠性。尼恩还分享了如何结合延迟消息进行事务数据的定时对账,确保最终一致性。最后,尼恩强调了高端面试中需要准备“高大上”的答案,并提供了多个技术领域的深度学习资料,帮助读者提升技术水平,顺利通过面试。
本地消息表事务:10Wqps 高并发分布式事务的 终极方案,大厂架构师的 必备方案
|
27天前
|
存储 网络协议 编译器
【C语言】深入解析C语言结构体:定义、声明与高级应用实践
通过根据需求合理选择结构体定义和声明的放置位置,并灵活结合动态内存分配、内存优化和数据结构设计,可以显著提高代码的可维护性和运行效率。在实际开发中,建议遵循以下原则: - **模块化设计**:尽可能封装实现细节,减少模块间的耦合。 - **内存管理**:明确动态分配与释放的责任,防止资源泄漏。 - **优化顺序**:合理排列结构体成员以减少内存占用。
122 14
|
1月前
|
存储 算法
深入解析PID控制算法:从理论到实践的完整指南
前言 大家好,今天我们介绍一下经典控制理论中的PID控制算法,并着重讲解该算法的编码实现,为实现后续的倒立摆样例内容做准备。 众所周知,掌握了 PID ,就相当于进入了控制工程的大门,也能为更高阶的控制理论学习打下基础。 在很多的自动化控制领域。都会遇到PID控制算法,这种算法具有很好的控制模式,可以让系统具有很好的鲁棒性。 基本介绍 PID 深入理解 (1)闭环控制系统:讲解 PID 之前,我们先解释什么是闭环控制系统。简单说就是一个有输入有输出的系统,输入能影响输出。一般情况下,人们也称输出为反馈,因此也叫闭环反馈控制系统。比如恒温水池,输入就是加热功率,输出就是水温度;比如冷库,
250 15

热门文章

最新文章

推荐镜像

更多