数据湖实操讲解【 AI 训练加速】第十八讲:Fluid + JindoFS 对海量小文件的训练加速

本文涉及的产品
EMR Serverless Spark 免费试用,1000 CU*H 有效期3个月
EMR Serverless StarRocks,5000CU*H 48000GB*H
简介: 数据湖 JindoFS+OSS 实操干货 36讲 每周二16点准时直播! 扫文章底部二维码入钉群,线上准时观看~ Github链接: https://github.com/aliyun/alibabacloud-jindofs

本期导读 :【AI 训练加速】第十八讲


主题:FFluid + JindoFS 对海量小文件的训练加速uid+JindoFSOSS 上数据进行训练加速

讲师:辰山,阿里巴巴计算平台事业部 EMR 技术专家


内容框架:

  • 海量小文件难题
  • Fluid JindoRuntime 小文件优化
  • 使用 JindoRuntime 加速小文件
  • 演示


直播回放链接:(18讲)

https://developer.aliyun.com/live/247034

一、海量小文件难题

 

AI 训练场景经常需要处理海量小文件

现状:

    image.png            

             

  • RPC 频繁,NameNode 压力大          
  • 延时高

      image.png    

  • 延时高
  • 高频访问稳定性

对缓存系统的诉求:

  • 低延时,高 QPS
  • 稳定可靠的访问性能
  • 能够支撑海量文件数

二、Fluid JindoRuntime 小文件优化

JindoRuntime:

image.png

高效的元数据缓存:

  • 基于 KV-Store 的元数据组织形式,可支持海量文件数,并且不会占用过多内存资源
  • 高效的元数据查询,并且通过热点缓存进一步加速点查性能
  • 元数据服务(Namespace Service)能够提供低延时、高 QPS 的访问性能

      image.pngimage.png

  • Fuse 客户端缓存

高效的数据组织及索引

  • 针对小文件数据块实现高性能磁盘存储及索引机制
  • 一致性哈希实现数据块的分布式缓存索引,缩短小文件读取的链路

        image.png

三、使用 JindoRuntime 加速小文件

JindoRuntime 加速小文件基本步骤

  • 下载并安装 Fluidhttps://github.com/aliyun/alibabacloud-jindodata/blob/master/docs/jindo_fluid/jindo_fluid_jindofs_hdfs_introduce.md
  • 创建 Dataset
  • 创建 JindoRuntime
  • 缓存预加载 DataLoad
  • 执行 AI 训练作业

       image.png

小文件加速效果

  • 参考文章:《速度提升 18倍!微博海量深度学习模型训练效率跃升的秘密》 https://www.infoq.cn/article/FClx4Cco6b1jomi6UZSy

image.png

    相比于 HDFS 接口

  • 1机 4 卡可以得到5 倍的加速
  • 2机 8 卡可以得到9 倍的加速
  • 3机 12 卡可以得到18 倍的加速

image.png

  • 训练总时长由原来的389小时(16 天)缩短到了16 小时

四、演示

Fluid JindoRuntime 使用

环境要求:

  • Kubernetes version > 1.14, 支持CSI
  • Golang 1.12+
  • Helm 3
  • Fluid 0.6.0


参考文档:https://github.com/aliyun/alibabacloud-jindofs/blob/master/docs/jindo_fluid/jindo_fluid_overview.md

ISSUE:https://github.com/aliyun/alibabacloud-jindofs/issues

image.png

演示:对 HDFS 上海量小文件进行访问加速

参考文档:https://github.com/aliyun/alibabacloud-jindofs/blob/master/docs/jindo_fluid/common/jindo_fluid_quickStart.md

image.png

image.png

相关文档链接:

  • Fluid  JindoRuntime 使用文档

https://github.com/aliyun/alibabacloud-jindofs/blob/master/docs/jindo_fluid/jindo_fluid_overview.md

  • ImageNet 数据集加速测试

https://github.com/aliyun/alibabacloud-jindofs/blob/master/docs/jindo_fluid/jindo_fluid_resnet50_example.md

  • InsightFace数据集加速测试

https://github.com/aliyun/alibabacloud-jindofs/blob/master/docs/jindo_fluid/jindo_fluid_cache_performance_report.md



点击回放链接,直接观看第18讲视频回放,获取讲师实例讲解:

   https://developer.aliyun.com/live/247034




Github链接:

https://github.com/aliyun/alibabacloud-jindofs


不错过每次直播信息、探讨更多数据湖 JindoFS+OSS 相关技术问题,欢迎扫码加入钉钉交流群!

69c0a02cc68742fca5d49d92413dc67a.png

相关实践学习
基于EMR Serverless StarRocks一键玩转世界杯
基于StarRocks构建极速统一OLAP平台
快速掌握阿里云 E-MapReduce
E-MapReduce 是构建于阿里云 ECS 弹性虚拟机之上,利用开源大数据生态系统,包括 Hadoop、Spark、HBase,为用户提供集群、作业、数据等管理的一站式大数据处理分析服务。 本课程主要介绍阿里云 E-MapReduce 的使用方法。
相关文章
|
2月前
|
数据采集 存储 人工智能
智创 AI 新视界 -- 优化 AI 模型训练效率的策略与技巧(16 - 1)
本文深度聚焦 AI 模型训练效率优化,全面涵盖数据预处理(清洗、归一化、增强)、模型架构(轻量级应用、剪枝与量化)、训练算法与超参数调优(自适应学习率、优化算法)等核心维度。结合自动驾驶、动物图像识别、语音识别等多领域实际案例,佐以丰富且详细的代码示例,深度剖析技术原理与应用技巧,为 AI 从业者呈上极具专业性、可操作性与参考价值的技术宝典,助力高效优化模型训练效率与性能提升。
智创 AI 新视界 -- 优化 AI 模型训练效率的策略与技巧(16 - 1)
|
5月前
|
人工智能 物联网 开发者
Oumi:开源的AI模型一站式开发平台,涵盖训练、评估和部署模型的综合性平台
Oumi 是一个完全开源的 AI 平台,支持从 1000 万到 4050 亿参数的模型训练,涵盖文本和多模态模型,提供零样板代码开发体验。
513 43
Oumi:开源的AI模型一站式开发平台,涵盖训练、评估和部署模型的综合性平台
|
4月前
|
机器学习/深度学习 人工智能 物联网
MiniMind:2小时训练出你的专属AI!开源轻量级语言模型,个人GPU轻松搞定
MiniMind 是一个开源的超小型语言模型项目,帮助开发者以极低成本从零开始训练自己的语言模型,最小版本仅需25.8M参数,适合在普通个人GPU上快速训练。
809 10
MiniMind:2小时训练出你的专属AI!开源轻量级语言模型,个人GPU轻松搞定
|
5月前
|
机器学习/深度学习 人工智能 计算机视觉
MILS:无需对LLM进行额外训练就能处理多模态任务,Meta AI提出零样本生成多模态描述方法
MILS 是 Meta AI 推出的零样本生成高质量多模态描述方法,支持图像、视频和音频的描述生成,无需额外训练。
257 34
MILS:无需对LLM进行额外训练就能处理多模态任务,Meta AI提出零样本生成多模态描述方法
|
5月前
|
人工智能 JSON PyTorch
TPO:告别微调!这个AI框架让大模型实时进化:无需训练直接优化,输入问题越用越聪明,输出质量暴涨50%
TPO(Test-Time Prompt Optimization)框架,通过奖励模型和迭代反馈优化大语言模型输出,无需训练即可显著提升性能,支持动态对齐人类偏好,降低优化成本。
354 8
TPO:告别微调!这个AI框架让大模型实时进化:无需训练直接优化,输入问题越用越聪明,输出质量暴涨50%
|
4月前
|
人工智能 自然语言处理 监控
17.1K star!两小时就能训练出专属与自己的个性化小模型,这个开源项目让AI触手可及!
🔥「只需一张消费级显卡,2小时完成26M参数GPT训练!」 🌟「从零构建中文大模型的最佳实践指南」 🚀「兼容OpenAI API,轻松接入各类AI应用平台」
141 1
|
5月前
|
人工智能 Python
Light-A-Video:好莱坞级打光自由!上海AI Lab开源视频打光AI,无需训练秒改画面氛围,3步让阴天变夕阳
Light-A-Video 是由上海AI Lab联合交大等高校推出的无需训练的视频重照明方法,支持高质量、时间一致的光照控制,零样本生成和前景背景分离处理。
123 9
Light-A-Video:好莱坞级打光自由!上海AI Lab开源视频打光AI,无需训练秒改画面氛围,3步让阴天变夕阳
|
4月前
|
存储 人工智能 Cloud Native
小鹏汽车选用阿里云PolarDB,开启AI大模型训练新时代
PolarDB-PG云原生分布式数据库不仅提供了无限的扩展能力,还借助丰富的PostgreSQL生态系统,统一了后台技术栈,极大地简化了运维工作。这种强大的组合不仅提高了系统的稳定性和性能,还为小鹏汽车大模型训练的数据管理带来了前所未有的灵活性和效率。
|
5月前
|
机器学习/深度学习 人工智能 Kubernetes
容器化AI模型部署实战:从训练到推理
在上一篇中,我们探讨了AI技术如何赋能容器化生态。本篇聚焦于AI模型的容器化部署,通过图像分类任务实例,详细介绍了从模型训练到推理服务的完整流程。使用PyTorch训练CNN模型,Docker打包镜像,并借助Kubernetes进行编排和部署,最终通过FastAPI提供推理服务。容器化技术极大提升了AI模型部署的便利性和管理效率,未来将成为主流趋势。
|
5月前
|
机器学习/深度学习 人工智能 PyTorch
从零开始:如何训练自己的AI模型
### 从零开始:如何训练自己的AI模型 训练AI模型如同培养新生儿,需耐心与技巧。首先明确目标(如图像识别、自然语言处理),选择框架(TensorFlow、PyTorch)。接着收集并预处理数据,确保多样性和准确性。然后设计模型结构,如卷积神经网络(CNN),并通过代码实现训练。训练后评估模型性能,调优以避免过拟合。最后部署模型至实际应用。通过猫狗分类器案例,掌握关键步骤和常见问题。训练AI模型是不断迭代优化的过程,实践才能真正掌握精髓。