【AI系统】并行训练基本介绍

简介: 分布式训练通过将任务分配至多个节点,显著提升模型训练效率与精度。本文聚焦PyTorch2.0中的分布式训练技术,涵盖数据并行、模型并行及混合并行等策略,以及DDP、RPC等核心组件的应用,旨在帮助开发者针对不同场景选择最合适的训练方式,实现高效的大模型训练。

分布式训练是一种模型训练模式,它将训练工作量分散到多个工作节点上,从而大大提高了训练速度和模型准确性。虽然分布式训练可用于任何类型的 AI 模型训练,但将其用于大模型和计算要求较高的任务最为有利。

本篇幅将围绕在 PyTorch2.0 中提供的多种分布式训练方式展开,包括并行训练,如:数据并行(Data Parallelism, DP)、模型并行(Model Parallelism, MP)、混合并行(Hybrid Parallel),可扩展的分布式训练组件,如:设备网格(Device Mesh)、RPC 分布式训练以及自定义扩展等。每种方法在特定用例中都有独特的优势。

具体来说,这些功能的实现可以分为三个主要组件:

  1. 分布式数据并行训练(DDP)是一种广泛采用的单程序多数据训练范式。在 DDP 中,模型会在每个进程上复制,每个模型副本将接收不同的输入数据样本。DDP 负责梯度通信以保持模型副本同步,并将其与梯度计算重叠以加速训练。

  2. 基于 RPC 的分布式训练(RPC)支持无法适应数据并行训练的通用训练结构,例如分布式流水线并行、参数服务器范式以及 DDP 与其他训练范式的组合。它有助于管理远程对象的生命周期,并将自动微分引擎扩展到单个计算节点之外。

  3. 提供了在组内进程之间发送张量的功能,包括集体通信 API(如 All Reduce 和 All Gather)和点对点通信 API(如 send 和 receive)。尽管 DDP 和 RPC 已经满足了大多数分布式训练需求,PyTorch 的中间表达 C10d 仍然在需要更细粒度通信控制的场景中发挥作用。例如,分布式参数平均,在这种情况下,应用程序希望在反向传播之后计算所有模型参数的平均值,而不是使用 DDP 来通信梯度。这可以将通信与计算解耦,并允许对通信内容进行更细粒度的控制,但同时也放弃了 DDP 提供的性能优化。

通过充分利用这些分布式训练组件,开发人员可以在各种计算要求和硬件配置下高效地训练大模型,实现更快的训练速度和更高的模型准确性。

如果您想了解更多AI知识,与AI专业人士交流,请立即访问昇腾社区官方网站https://www.hiascend.com/或者深入研读《AI系统:原理与架构》一书,这里汇聚了海量的AI学习资源和实践课程,为您的AI技术成长提供强劲动力。不仅如此,您还有机会投身于全国昇腾AI创新大赛和昇腾AI开发者创享日等盛事,发现AI世界的无限奥秘~

目录
相关文章
|
3天前
|
机器学习/深度学习 存储 人工智能
【AI系统】昇思MindSpore并行
本文介绍昇思MindSpore的并行训练技术,包括张量重排布、自动微分等,旨在简化并行策略搜索,提高大规模模型训练效率。文章探讨了大模型带来的挑战及现有框架的局限性,详细说明了MindSpore如何通过技术创新解决这些问题,实现高效的大模型训练。
46 20
【AI系统】昇思MindSpore并行
|
1天前
|
机器学习/深度学习 人工智能 自然语言处理
转载:【AI系统】AI的领域、场景与行业应用
本文概述了AI的历史、现状及发展趋势,探讨了AI在计算机视觉、自然语言处理、语音识别等领域的应用,以及在金融、医疗、教育、互联网等行业中的实践案例。随着技术进步,AI模型正从单一走向多样化,从小规模到大规模分布式训练,企业级AI系统设计面临更多挑战,同时也带来了新的研究与工程实践机遇。文中强调了AI基础设施的重要性,并鼓励读者深入了解AI系统的设计原则与研究方法,共同推动AI技术的发展。
转载:【AI系统】AI的领域、场景与行业应用
|
3天前
|
机器学习/深度学习 人工智能 分布式计算
【AI系统】混合并行
混合并行融合了数据并行、模型并行和流水线并行,旨在高效利用计算资源,尤其适合大规模深度学习模型训练。通过将模型和数据合理分配至多个设备,混合并行不仅提升了计算效率,还优化了内存使用,使得在有限的硬件条件下也能处理超大型模型。3D混合并行(DP+PP+TP)是最先进的形式,需至少8个GPU实现。此策略通过拓扑感知3D映射最大化计算效率,减少通信开销,是当前深度学习训练框架如Deepspeed和Colossal AI的核心技术之一。
42 15
【AI系统】混合并行
|
3天前
|
存储 人工智能 PyTorch
【AI系统】张量并行
在大模型训练中,单个设备难以满足需求,模型并行技术应运而生。其中,张量并行(Tensor Parallelism, TP)将模型内部的参数和计算任务拆分到不同设备上,特别适用于大规模模型。本文介绍了张量并行的基本概念、实现方法及其在矩阵乘法、Transformer、Embedding和Cross Entropy Loss等场景中的应用,以及通过PyTorch DeviceMesh实现TP的具体步骤。
30 11
【AI系统】张量并行
|
3天前
|
存储 机器学习/深度学习 人工智能
【AI系统】完全分片数据并行 FSDP
本文深入探讨了AI框架中针对权重数据、优化器数据和梯度数据的分布式并行实现,特别是在PyTorch框架下的具体方案。文章首先回顾了通用数据并行和分布式数据并行的概念,重点讨论了同步与异步数据并行的差异。接着,文章详细介绍了如何在PyTorch中实现弹性数据并行,特别是完全分片数据并行(FSDP)的机制,包括其如何通过分片模型状态和剩余状态来减少内存消耗,提高训练效率。此外,文章还探讨了混合精度训练、损失缩放和内存消耗估算等关键技术,为理解和实施高效的分布式训练提供了全面的指导。
21 9
【AI系统】完全分片数据并行 FSDP
|
3天前
|
机器学习/深度学习 存储 人工智能
【AI系统】流水并行
在大模型训练中,单个设备难以满足计算和存储需求,分布式训练成为必要。模型并行是其中关键技术之一,通过将模型计算任务拆分至不同设备上执行,提高训练效率。模型并行主要包括朴素模型并行、张量并行和流水线并行。流水线并行通过将模型的不同层分配到不同设备上,采用微批次处理,提高设备利用率。Gpipe和PipeDream是两种流行的流水线并行方案,前者通过重叠前向和反向传播提升效率,后者则通过1F1B策略实现交错执行,最大化利用计算资源。
31 15
|
1天前
|
人工智能 缓存 异构计算
云原生AI加速生成式人工智能应用的部署构建
本文探讨了云原生技术背景下,尤其是Kubernetes和容器技术的发展,对模型推理服务带来的挑战与优化策略。文中详细介绍了Knative的弹性扩展机制,包括HPA和CronHPA,以及针对传统弹性扩展“滞后”问题提出的AHPA(高级弹性预测)。此外,文章重点介绍了Fluid项目,它通过分布式缓存优化了模型加载的I/O操作,显著缩短了推理服务的冷启动时间,特别是在处理大规模并发请求时表现出色。通过实际案例,展示了Fluid在vLLM和Qwen模型推理中的应用效果,证明了其在提高模型推理效率和响应速度方面的优势。
云原生AI加速生成式人工智能应用的部署构建
|
1天前
|
机器学习/深度学习 人工智能 物联网
AI赋能大学计划·大模型技术与应用实战学生训练营——电子科技大学站圆满结营
12月05日,由中国软件行业校园招聘与实习公共服务平台携手阿里魔搭社区共同举办的AI赋能大学计划·大模型技术与产业趋势高校行AIGC项目实战营·电子科技大学站圆满结营。
AI赋能大学计划·大模型技术与应用实战学生训练营——电子科技大学站圆满结营
|
6天前
|
机器学习/深度学习 人工智能 JSON
【实战干货】AI大模型工程应用于车联网场景的实战总结
本文介绍了图像生成技术在AIGC领域的发展历程、关键技术和当前趋势,以及这些技术如何应用于新能源汽车行业的车联网服务中。
|
2天前
|
人工智能 Kubernetes 安全
赋能加速AI应用交付,F5 BIG-IP Next for Kubernetes方案解读
赋能加速AI应用交付,F5 BIG-IP Next for Kubernetes方案解读
31 13