AI和大数据下,前端技术将如何发展?

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 2010年前后,各种大数据应用进入爆发期。如果说之前的Web应用更多地是在“产生”数据,那在2010年之后,如何更好地“展现”数据则被提上了新的高度,很多前端技术也随之打开了新的篇章。本文作者结合自己的实践,从数据可视化、软件Web化和交互多样化三个方面,分享大数据和人工智能对前端技术发展的影响。

image.png

概览

因为长期在做跟阿里云飞天大数据平台相关的前端工作,也一直在思考一个问题:“大数据的前端跟其他业务的前端有什么不一样”,具体来说就是,在大数据和人工智能的浪潮下,到底对前端技术的发展带来了什么影响。

以团队在负责在做的阿里云飞天大数据平台为例,从在 2009 年写下第一行代码,现在已经是阿里大数据发展的第 11 个年头。我是 2011 年加入阿里的,之后就一直在负责做大数据相关的前端工作,基本上参与了阿里绝大部分大数据发展的历史进程。现在回头看,很庆幸自己在一个历史的变革时期入行,更有幸见证了一些划时代意义的数据产品的诞生,以及它们对前端技术带来的变革。
image.png

如果我们把 2010 年当做大数据 Web 产品应用的元年,会发现它是一个有趣的年份,为什么这样讲?

回看前端的发展历史,在 2005 年前后有一波大的技术变革,就是从 Web1.0 到 Web2.0 的过渡。

在此之前,前端更多地是做纯内容的静态展示,比如下图中的那个时期的苹果和雅虎的官网。

image.png

之后前端开始逐渐做成复交互的动态网页,这其中一个重要的历史性标志就是 Gmail 对 Ajax 等新技术的应用。

image.png

而在 2010 年前后,各种大数据应用进入一个爆发期间,阿里很多知名的应用基本都在那段时间展露头角,现在回头再来看那段历史,这其中很大的一个原因,随着互联网的大发展,特别是 Web2.0 之后,数据的有了大爆发的增长。

下图就很好地展现了这个趋势,如果说之前的 Web 应用更多在“产生”数据阶段,那在 2010 年之后如何更好的“展现”数据被提上了新的高度,很多前端技术也因之打开了新的篇章。

image.png

后面会结合自己的实践,以三条主线来讲讲数据智能浪潮对前端技术发展的影响,分别是数据可视化,软件泛 Web 化和交互多样化。

数据可视化

大数据浪潮下,最明显的一个特征就是数据的指数型增长,从上图中就能看到这个趋势,随之而来的挑战就是如何更形象地展现数据并进行交互展示,也就是我们通常讲的“数据可视化”。

回到技术本身,那数据可视化对前端最大的影响应该是大大促进了 SVG,Canvas 和 WebGL 的发展。

image.png

而这当中,除了浏览器底层技术的升级,在上层可视化库和可视化应用也涌现了大量优秀的作品,其中佼佼者包括:

  • 开源技术组件层面
    • AntV
    • Echarts
    • HighLights
    • ...

image.png

  • 重数据可视化的产品
    • 阿里云大屏可视化产品 DataV
    • 阿里云的 Quick BI
    • BI 分析工具 Tebleau
    • 特色领域的分析产品,比如 Plantir

image.png

在专业的细分领域,比如地理,安防,新零售,等领域中不同场景就有很多机会。具体比如在我们阿里云的一站式大数据开发治理平台的 DataWorks[1] 产品就有用于做流程编排的 DAG,图分析[2],数据的血缘分析等有意思的可视化。

image.png

软件 Web 化

大家最近应该注意到一个现象那就是:Web 系统做得越来越复杂,很多原先桌面端的复交互应用逐渐 “泛 Web 化”,甚至很多应用一上来就是 Web 的技术做第一版。

这里说的泛 Web,从表现中又可以分为两种:

一是直接用前端技术去做桌面软件,其中标志性事件就是 NW.js 和 Electron 在 2013 起步后的蓬勃发展;大家熟悉的 IDE VSCode 就是这当中的典型代表;阿里的桌面版钉钉 UI 层大量用到的 Web 的技术。

image.png

另外一种就是直接在 Web 上实现,比如 大家最近能看到各种 Web'X' 系统( Google Docs )。

这背后推动力,一是随着浏览器相关逐渐走向统一,用它的技术可以更便捷地实现跨端,另一个就是云计算大数据的兴起,特别云端的存储和算力逐渐突破了原先的本地 PC 的性能边界,因而重塑了原先人机交互的入口。

关于跨端的好处自不用多讲,我想想重点讲讲第二点。要讲这个逻辑,我又得简单讲讲计算机的发展,从占地 170 平方米的世界上第一台通用计算机 “ENIAC”,到苹果和微软时代的个人 PC,移动时代的 iPhone 和 Andriod,再到云计算时代的大型计算集群。

image.png

对开发者工具而言,之前前很多软件很多都是本地,因为它往往用本地 PC 的计算力就够了,但大数据的场景下计算本地算力肯定是不够的,它是依赖云端的计算集群(以我们阿里飞天大数据平台而言,我们已经 10 万台计算集群的规模),如何在用户侧用上更方便和灵活地使用这些算力就是我们前端重点要做的,而这是原先软件的架构要不不能让你做定制,要不定制的成本很高(有时候甚至超过了重新做一套的成本),因此很多系统会选择重新起航做一版。

这其中,我们负责阿里云的 Dataworks 中的两大件:WebIDE 和 WebExcel ,就非常典型的例子。

image.png

Dataworks 从一开始就是根据云原生的思路设计开发的,后端需要通过云计算提供强大的算力替换原先的本地算力,前端需要实现更精巧的架构设计来对应日益复杂的交互能力;具体到我们的应用,它包括但不限于:

  • 架构层面
    • 状态管理
    • 插件化
    • ...
  • 复交互的组件
    • Editor
    • Form/Excel
    • Tree
    • Logivew
    • ...

交互多样化

最近今年在以数据驱动的人工智能的大力发展下,特别在图像识别,语音识别,自然语言处理方面获得了很大的突破,让前端的新交互也获得了长足的进步。

UX

在面向使用者(UX)产品由 GUI(Graphical User Interface)变成 XUI,用户不仅可以用通过鼠标键盘方式操作图形界面,更可以通过面部表情,身体动作,语音交互等形式提供新的交互形态。

下图就是在 2016 年左右,我们在阿里云ET中一些人机对话,互动游戏中的一些实践,具体可以看这里[3]。

image.png

这一轮的技术变革,有两个大的宏观的背景。

AI 技术的第三波潮起

随着 2010 年前后,深度学习技术的成熟,计算力的提升,以及互联网时代积累的大数据财富,人工智能技术开始一段与以往大为不同的复兴之路;分别在语音识别,图像识别,自然语言处理等相关技术上获得根本的突破。

例如, 2012 年到 2015 年,在代表计算机智能图像识别最前沿发展水平的 ImageNet 竞赛(ILSVRC)中,参赛的人工智能算法在识别准确率上突飞猛进。2014 年,在识别图片中的人、动物、车辆或其他常见对象时,基于深度学习的计算机程序超过了普通人类的肉眼识别准确率。

下图就摘自李开复老师的《人工智能》就体现了这个趋势:

image.png

WebRTC

对于前端来讲,另一个必备条件就是 WebRTC (Web Real-Time Communication)技术的成熟,它于 2011 年 6 月 1 日开源并在 Google、Mozilla、Opera 支持下被纳入万维网联盟的 W3C 推荐标准。通过它,前端可以便捷地处理图像,视频,语音等内容。大家目前看到很多有意思的交互底层就是依赖他。

image.png

DX

在面向前端开发者(DX):智能化手段可以提升我们的研发效率和体验,以我们阿里和蚂蚁自身的实现看,Imgcook(D2C:Desgin to Code),代码智能提示[4],智能可视化 AVA[5],前端机器学习 pipcook[6] 都是挺有意思的尝试。
image.png

总结

以上就是我在实践中关于数据浪潮下前端技术发展的一些思考。当然前端技术技术这几年能获得这么长足进步,除了数据智能,其他大趋势(比如移动互联,5G,IoT)也深刻影响了前端技术的走向,但这些就不在本文讨论的范围内,有机会再跟大家讨论。

一直很喜欢吴军在《智能时代》一书中提到的一个观点:“2% 的人将控制未来,成为他们或者被淘汰”。期望各位前端同学都能在这波数据智能化的浪潮中找到自己的定位。

写在最后

如果大家对这块感兴趣,也希望来阿里巴巴一起做大数据和人工智能相关的工作,随时欢迎私信或者发简历给我:jifeng.zjd@taobao.com。大家一起合作,做件有意义的事情,团队长期招人。

相关链接

[1]https://www.aliyun.com/product/bigdata/ide
[2]https://zhuanlan.zhihu.com/p/132393588
[3]https://www.zhihu.com/question/56560321/answer/203249193
[4]https://zhuanlan.zhihu.com/p/115377444
[5]https://github.com/antvis/AVA
[6]https://github.com/alibaba/pipcook

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
11天前
|
人工智能 达摩院 计算机视觉
SHMT:体验 AI 虚拟化妆!阿里巴巴达摩院推出自监督化妆转移技术
SHMT 是阿里达摩院与武汉理工等机构联合研发的自监督化妆转移技术,支持高效妆容迁移与动态对齐,适用于图像处理、虚拟试妆等多个领域。
48 9
SHMT:体验 AI 虚拟化妆!阿里巴巴达摩院推出自监督化妆转移技术
|
7天前
|
存储 人工智能 安全
AI时代的网络安全:传统技术的落寞与新机遇
在AI时代,网络安全正经历深刻变革。传统技术如多因素身份认证、防火墙和基于密码的系统逐渐失效,难以应对新型攻击。然而,AI带来了新机遇:智能化威胁检测、优化安全流程、生物特征加密及漏洞管理等。AI赋能的安全解决方案大幅提升防护能力,但也面临数据隐私和技能短缺等挑战。企业需制定清晰AI政策,强化人机协作,推动行业持续发展。
38 16
|
13天前
|
人工智能 Java 程序员
通义灵码AI编码助手和AI程序员背后的技术
通义灵码AI编码助手和AI程序员背后的技术,由通义实验室科学家黎槟华分享。内容涵盖三部分:1. 编码助手技术,包括构建优秀AI编码助手及代码生成补全;2. 相关的AI程序员技术,探讨AI程序员的优势、发展情况、评估方法及核心难点;3. 代码智能方向的展望,分析AI在软件开发中的角色转变,从辅助编程到成为开发主力,未来将由AI执行细节任务,开发者负责决策和审核,大幅提升开发效率。
103 12
|
15天前
|
人工智能 搜索推荐
AI视频技术的发展是否会影响原创内容的价值
AI视频技术的发展显著降低了视频制作的门槛与成本,自动完成剪辑、特效添加等繁琐工作,大大缩短创作时间。它提供个性化创意建议,帮助创作者突破传统思维,拓展创意边界。此外,AI技术使更多非专业人士也能参与视频创作,注入新活力与多样性,丰富了原创内容。总体而言,AI视频技术不仅提升了创作效率,还促进了视频内容的创新与多样化。
|
8天前
|
机器学习/深度学习 存储 人工智能
AI实践:智能工单系统的技术逻辑与应用
智能工单系统是企业服务管理的核心工具,通过多渠道接入、自然语言处理等技术,实现工单自动生成、分类和分配。它优化了客户服务流程,提高了效率与透明度,减少了运营成本,提升了客户满意度。系统还依托知识库和机器学习,持续改进处理策略,助力企业在竞争中脱颖而出。
33 5
|
15天前
|
人工智能 分布式计算 大数据
MaxFrame 产品评测:大数据与AI融合的Python分布式计算框架
MaxFrame是阿里云MaxCompute推出的自研Python分布式计算框架,支持大规模数据处理与AI应用。它提供类似Pandas的API,简化开发流程,并兼容多种机器学习库,加速模型训练前的数据准备。MaxFrame融合大数据和AI,提升效率、促进协作、增强创新能力。尽管初次配置稍显复杂,但其强大的功能集、性能优化及开放性使其成为现代企业与研究机构的理想选择。未来有望进一步简化使用门槛并加强社区建设。
50 7
|
12天前
|
机器学习/深度学习 人工智能 编译器
BladeDISC++:Dynamic Shape AI 编译器下的显存优化技术
本文介绍了阿里云 PAI 团队近期发布的 BladeDISC++项目,探讨在动态场景下如何优化深度学习训练任务的显存峰值,主要内容包括以下三个部分:Dynamic Shape 场景下显存优化的背景与挑战;BladeDISC++的创新解决方案;Llama2 模型的实验数据分析
|
12天前
|
存储 人工智能 边缘计算
AI时代下, 边缘云上的技术演进与场景创新
本文介绍了AI时代下边缘云的技术演进与场景创新。主要内容分为三部分:一是边缘云算力形态的多元化演进,强调阿里云边缘节点服务(ENS)在全球600多个节点的部署,提供低时延、本地化和小型化的价值;二是边缘AI推理的创新发展与实践,涵盖低时延、资源广分布、本地化及弹性需求等优势;三是云游戏在边缘承载的技术演进,探讨云游戏对边缘计算的依赖及其技术方案,如多开技术、云存储和网络架构优化,以提升用户体验并降低成本。文章展示了边缘云在未来智能化、实时化解决方案中的重要性。
|
12天前
|
人工智能 编解码 安全
全球AI新浪潮:智能媒体服务的技术创新与AIGC加速出海
本文介绍了智能媒体服务的国际化产品技术创新及AIGC驱动的内容出海技术实践。首先,探讨了媒体服务在视频应用中的升级引擎作用,分析了国际市场的差异与挑战,并提出模块化产品方案以满足不同需求。其次,重点介绍了AIGC技术如何推动媒体服务2.0智能化进化,涵盖多模态内容理解、智能生产制作、音视频处理等方面。最后,发布了阿里云智能媒体服务的国际产品矩阵,包括媒体打包、转码、实时处理和传输服务,支持多种广告规格和效果追踪分析,助力全球企业进行视频化创新。
|
14天前
|
人工智能 运维 物联网
云大使 X 函数计算 FC 专属活动上线!享返佣,一键打造 AI 应用
如今,AI 技术已经成为推动业务创新和增长的重要力量。但对于许多企业和开发者来说,如何高效、便捷地部署和管理 AI 应用仍然是一个挑战。阿里云函数计算 FC 以其免运维的特点,大大降低了 AI 应用部署的复杂性。用户无需担心底层资源的管理和运维问题,可以专注于应用的创新和开发,并且用户可以通过一键部署功能,迅速将 AI 大模型部署到云端,实现快速上线和迭代。函数计算目前推出了多种规格的云资源优惠套餐,用户可以根据实际需求灵活选择。