Java多线程之深入解析ThreadLocal和ThreadLocalMap

本文涉及的产品
云解析 DNS,旗舰版 1个月
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介:

Java多线程之深入解析ThreadLocal和ThreadLocalMap

ThreadLocal概述
ThreadLocal是线程变量,ThreadLocal中填充的变量属于当前线程,该变量对其他线程而言是隔离的。ThreadLocal为变量在每个线程中都创建了一个副本,那么每个线程可以访问自己内部的副本变量。

它具有3个特性:

线程并发:在多线程并发场景下使用。
传递数据:可以通过ThreadLocal在同一线程,不同组件中传递公共变量。
线程隔离:每个线程变量都是独立的,不会相互影响。
在不使用ThreadLocal的情况下,变量不隔离,得到的结果具有随机性。

public class Demo {

private String variable;

public String getVariable() {
    return variable;
}

public void setVariable(String variable) {
    this.variable = variable;
}

public static void main(String[] args) {
    Demo demo = new Demo();
    for (int i = 0; i < 5; i++) {
        new Thread(()->{
            demo.setVariable(Thread.currentThread().getName());
            System.out.println(Thread.currentThread().getName()+" "+demo.getVariable());
        }).start();
    }
}

}

输出结果:

 View Code
在不使用ThreadLocal的情况下,变量隔离,每个线程有自己专属的本地变量variable,线程绑定了自己的variable,只对自己绑定的变量进行读写操作。

public class Demo {

private ThreadLocal<String> variable = new ThreadLocal<>();

public String getVariable() {
    return variable.get();
}

public void setVariable(String variable) {
    this.variable.set(variable);
}

public static void main(String[] args) {
    Demo demo = new Demo();
    for (int i = 0; i < 5; i++) {
        new Thread(()->{
            demo.setVariable(Thread.currentThread().getName());
            System.out.println(Thread.currentThread().getName()+" "+demo.getVariable());
        }).start();
    }
}

}

输出结果:

 View Code
synchronized和ThreadLocal的比较
上述需求,通过synchronized加锁同样也能实现。但是加锁对性能和并发性有一定的影响,线程访问变量只能排队等候依次操作。TreadLocal不加锁,多个线程可以并发对变量进行操作。

public class Demo {

private String variable;
public String getVariable() {
    return variable;
}

public void setVariable(String variable) {
    this.variable = variable;
}

public static void main(String[] args) {
    Demo demo = new Demo1();
    for (int i = 0; i < 5; i++) {
        new Thread(()->{
            synchronized (Demo.class){
                demo.setVariable(Thread.currentThread().getName());
                System.out.println(Thread.currentThread().getName()+" "+demo.getVariable());
            }
        }).start();
    }
}

}

ThreadLocal和synchronized都是用于处理多线程并发访问资源的问题。ThreadLocal是以空间换时间的思路,每个线程都拥有一份变量的拷贝,从而实现变量隔离,互相不干扰。关注的重点是线程之间数据的相互隔离关系。synchronized是以时间换空间的思路,只提供一个变量,线程只能通过排队访问。关注的是线程之间访问资源的同步性。ThreadLocal可以带来更好的并发性,在多线程、高并发的环境中更为合适一些。

ThreadLocal使用场景
转账事务的例子
JDBC对于事务原子性的控制可以通过setAutoCommit(false)设置为事务手动提交,成功后commit,失败后rollback。在多线程的场景下,在service层开启事务时用的connection和在dao层访问数据库的connection应该要保持一致,所以并发时,线程只能隔离操作自已的connection。

解决方案1:service层的connection对象作为参数传递给dao层使用,事务操作放在同步代码块中。

存在问题:传参提高了代码的耦合程度,加锁降低了程序的性能。

解决方案2:当需要获取connection对象的时候,通过ThreadLocal对象的get方法直接获取当前线程绑定的连接对象使用,如果连接对象是空的,则去连接池获取连接,并通过ThreadLocal对象的set方法绑定到当前线程。使用完之后调用ThreadLocal对象的remove方法解绑连接对象。

ThreadLocal的优势:

可以方便地传递数据:保存每个线程绑定的数据,需要的时候可以直接获取,避免了传参带来的耦合。
可以保持线程间隔离:数据的隔离在并发的情况下也能保持一致性,避免了同步的性能损失。
ThreadLocal的原理
每个ThreadLocal维护一个ThreadLocalMap,Map的Key是ThreadLocal实例本身,value是要存储的值。

每个线程内部都有一个ThreadLocalMap,Map里面存放的是ThreadLocal对象和线程的变量副本。Thread内部的Map通过ThreadLocal对象来维护,向map获取和设置变量副本的值。不同的线程,每次获取变量值时,只能获取自己对象的副本的值。实现了线程之间的数据隔离。

JDK1.8的设计相比于之前的设计(通过ThreadMap维护了多个线程和线程变量的对应关系,key是Thread对象,value是线程变量)的好处在于,每个Map存储的Entry数量变少了,线程越多键值对越多。现在的键值对的数量是由ThreadLocal的数量决定的,一般情况下ThreadLocal的数量少于线程的数量,而且并不是每个线程都需要创建ThreadLocal变量。当Thread销毁时,ThreadLocal也会随之销毁,减少了内存的使用,之前的方案中线程销毁后,ThreadLocalMap仍然存在。

ThreadLocal源码解析
set方法
首先获取线程,然后获取线程的Map。如果Map不为空则将当前ThreadLocal的引用作为key设置到Map中。如果Map为空,则创建一个Map并设置初始值。

get方法
首先获取当前线程,然后获取Map。如果Map不为空,则Map根据ThreadLocal的引用来获取Entry,如果Entry不为空,则获取到value值,返回。如果Map为空或者Entry为空,则初始化并获取初始值value,然后用ThreadLocal引用和value作为key和value创建一个新的Map。

remove方法
删除当前线程中保存的ThreadLocal对应的实体entry。

initialValue方法
该方法的第一次调用发生在当线程通过get方法访问线程的ThreadLocal值时。除非线程先调用了set方法,在这种情况下,initialValue才不会被这个线程调用。每个线程最多调用依次这个方法。

该方法只返回一个null,如果想要线程变量有初始值需要通过子类继承ThreadLocal的方式去重写此方法,通常可以通过匿名内部类的方式实现。这个方法是protected修饰的,是为了让子类覆盖而设计的。

ThreadLocalMap源码分析
ThreadLocalMap是ThreadLocal的静态内部类,没有实现Map接口,独立实现了Map的功能,内部的Entry也是独立实现的。

与HashMap类似,初始容量默认是16,初始容量必须是2的整数幂。通过Entry类的数据table存放数据。size是存放的数量,threshold是扩容阈值。

Entry继承自WeakReference,key是弱引用,其目的是将ThreadLocal对象的生命周期和线程生命周期解绑。

弱引用和内存泄漏
内存溢出:没有足够的内存供申请者提供

内存泄漏:程序中已动态分配的堆内存由于某种原因程序未释放或无法释放,造成系统内存的浪费,导致程序运行速度减慢甚至系统崩溃等验证后沟。内存泄漏的堆积会导致内存溢出。

弱引用:垃圾回收器一旦发现了弱引用的对象,不管内存是否足够,都会回收它的内存。

内存泄漏的根源是ThreadLocalMap和Thread的生命周期是一样长的。

如果在ThreadLocalMap的key使用强引用还是无法完全避免内存泄漏,ThreadLocal使用完后,ThreadLocal Reference被回收,但是Map的Entry强引用了ThreadLocal,ThreadLocal就无法被回收,因为强引用链的存在,Entry无法被回收,最后会内存泄漏。

在实际情况中,ThreadLocalMap中使用的key为ThreadLocal的弱引用,value是强引用。如果ThreadLocal没有被外部强引用的话,在垃圾回收的时候,key会被清理,value不会。这样ThreadLocalMap就出现了为null的Entry。如果不做任何措施,value永远不会被GC回收,就会产生内存泄漏。

ThreadLocalMap中考虑到这个情况,在set、get、remove操作后,会清理掉key为null的记录(将value也置为null)。使用完ThreadLocal后最后手动调用remove方法(删除Entry)。

也就是说,使用完ThreadLocal后,线程仍然运行,如果忘记调用remove方法,弱引用比强引用可以多一层保障,弱引用的ThreadLocal会被回收,对应的value会在下一次ThreadLocalMap调用get、set、remove方法的时候被清除,从而避免了内存泄漏。

Hash冲突的解决
ThreadLocalMap的构造方法

构造函数创建一个长队为16的Entry数组,然后计算firstKey的索引,存储到table中,设置size和threshold。

firstKey.threadLocalHashCode & (INITIAL_CAPACITY-1)用来计算索引,nextHashCode是Atomicinteger类型的,Atomicinteger类是提供原子操作的Integer类,通过线程安全的方式来加减,适合高并发使用。

每次在当前值上加上一个HASH_INCREMENT值,这个值和斐波拉契数列有关,主要目的是为了让哈希码可以均匀的分布在2的n次方的数组里,从而尽量的避免冲突。

当size为2的幂次的时候,hashCode & (size - 1)相当于取模运算hashCode % size,位运算比取模更高效一些。为了使用这种取模运算, 所有size必须是2的幂次。这样一来,在保证索引不越界的情况下,减少冲突的次数。

ThreadLocalMap的set方法

ThreadLocalMao使用了线性探测法来解决冲突。线性探测法探测下一个地址,找到空的地址则插入,若整个空间都没有空余地址,则产生溢出。例如:长度为8的数组中,当前key的hash值是6,6的位置已经被占用了,则hash值加一,寻找7的位置,7的位置也被占用了,回到0的位置。直到可以插入为止,可以将这个数组看成一个环形数组。

原文地址https://www.cnblogs.com/xdcat/p/13051561.html

相关文章
|
3天前
|
存储 缓存 Java
什么是线程池?从底层源码入手,深度解析线程池的工作原理
本文从底层源码入手,深度解析ThreadPoolExecutor底层源码,包括其核心字段、内部类和重要方法,另外对Executors工具类下的四种自带线程池源码进行解释。 阅读本文后,可以对线程池的工作原理、七大参数、生命周期、拒绝策略等内容拥有更深入的认识。
什么是线程池?从底层源码入手,深度解析线程池的工作原理
|
4天前
|
存储 缓存 安全
【Java面试题汇总】多线程、JUC、锁篇(2023版)
线程和进程的区别、CAS的ABA问题、AQS、哪些地方使用了CAS、怎么保证线程安全、线程同步方式、synchronized的用法及原理、Lock、volatile、线程的六个状态、ThreadLocal、线程通信方式、创建方式、两种创建线程池的方法、线程池设置合适的线程数、线程安全的集合?ConcurrentHashMap、JUC
【Java面试题汇总】多线程、JUC、锁篇(2023版)
|
8天前
|
Java 调度 开发者
Java并发编程:深入理解线程池
在Java的世界中,线程池是提升应用性能、实现高效并发处理的关键工具。本文将深入浅出地介绍线程池的核心概念、工作原理以及如何在实际应用中有效利用线程池来优化资源管理和任务调度。通过本文的学习,读者能够掌握线程池的基本使用技巧,并理解其背后的设计哲学。
|
7天前
|
缓存 监控 Java
Java中的并发编程:理解并应用线程池
在Java的并发编程中,线程池是提高应用程序性能的关键工具。本文将深入探讨如何有效利用线程池来管理资源、提升效率和简化代码结构。我们将从基础概念出发,逐步介绍线程池的配置、使用场景以及最佳实践,帮助开发者更好地掌握并发编程的核心技巧。
|
4天前
|
Java 调度 开发者
Java中的多线程基础及其应用
【9月更文挑战第13天】本文将深入探讨Java中的多线程概念,从基本理论到实际应用,带你一步步了解如何有效使用多线程来提升程序的性能。我们将通过实际代码示例,展示如何在Java中创建和管理线程,以及如何利用线程池优化资源管理。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的见解和技巧,帮助你更好地理解和应用多线程编程。
|
9天前
|
算法 Java 数据处理
Java并发编程:解锁多线程的力量
在Java的世界里,掌握并发编程是提升应用性能和响应能力的关键。本文将深入浅出地探讨如何利用Java的多线程特性来优化程序执行效率,从基础的线程创建到高级的并发工具类使用,带领读者一步步解锁Java并发编程的奥秘。你将学习到如何避免常见的并发陷阱,并实际应用这些知识来解决现实世界的问题。让我们一起开启高效编码的旅程吧!
|
8天前
|
安全 Java UED
Java并发编程:解锁多线程的潜力
在Java的世界里,并发编程如同一场精心编排的交响乐,每个线程扮演着不同的乐手,共同奏响性能与效率的和声。本文将引导你走进Java并发编程的大门,探索如何在多核处理器上优雅地舞动多线程,从而提升应用的性能和响应性。我们将从基础概念出发,逐步深入到高级技巧,让你的代码在并行处理的海洋中乘风破浪。
|
19天前
|
监控 网络协议 Java
Tomcat源码解析】整体架构组成及核心组件
Tomcat,原名Catalina,是一款优雅轻盈的Web服务器,自4.x版本起扩展了JSP、EL等功能,超越了单纯的Servlet容器范畴。Servlet是Sun公司为Java编程Web应用制定的规范,Tomcat作为Servlet容器,负责构建Request与Response对象,并执行业务逻辑。
Tomcat源码解析】整体架构组成及核心组件
|
1月前
|
存储 NoSQL Redis
redis 6源码解析之 object
redis 6源码解析之 object
53 6
|
3天前
|
设计模式 Java 关系型数据库
【Java笔记+踩坑汇总】Java基础+JavaWeb+SSM+SpringBoot+SpringCloud+瑞吉外卖/谷粒商城/学成在线+设计模式+面试题汇总+性能调优/架构设计+源码解析
本文是“Java学习路线”专栏的导航文章,目标是为Java初学者和初中高级工程师提供一套完整的Java学习路线。

推荐镜像

更多