使用DLA分析AnalyticDB for MySQL 3.0的数据

简介:

阿里云数据湖分析(Data Lake Analytics)支持对AnalyticDB for MySQL 3.0 中的数据进行直接分析,这篇文章介绍一下用法。

创建数据库

在 DLA 里面创建一个底层映射到 AnalyticDB for MySQL 3.0 的Database的语法如下:

CREATE DATABASE `adb3_demo_db`
WITH DBPROPERTIES (
    catalog = 'adb3',
    location = 'jdbc:mysql://am-xxxxx.ads.aliyuncs.com/adb3_it_db',
    user = 'dla_test',
    password = 'openanalytics@2018',
    vpc_id = 'vpc-xxxxxxxx',
    instance_id = 'am-xxxxxx'
);

注意这里的 catalog = 'adb3' 指明了这个映射的库是一个AnalyticDB for MySQL 3.0的库。跟普通的建库不同的是这里多了两个属性: VPC_ID 和 INSTANCE_ID 。VPC_ID 是您的AnalyticDB for MySQL 3.0所在VPC的ID, 而 INSTANCE_ID 则是你的 AnalyticDB for MySQL 3.0 实例ID,如下图所示:

image

建表需要这两个额外信息是因为现在用户的数据库都是处于用户自己的VPC内部,默认情况下 DLA 是访问不了用户 VPC 里面的资源的,为了让DLA能够访问到用户 AnalyticDB 3.0 里面的数据,我们需要利用阿里云的VPC反向访问技术。

权限声明: 当您通过上述方式建库,就视为您同意我们利用VPC反向访问的技术去读写您的RDS。

另外您还需要把 100.104.0.0/16 IP地址段加入到你的 AnalyticDB for MySQL 3.0 的白名单列表,这是我们VPC反向访问的IP地段,如下图:

image

创建表

数据库建完之后,我们可以建表了,我们先在你的 AnalyticDB for MySQL 3.0 里面建立如下的 person 表用来做测试:

create table person (
       id int,
       name varchar(1023),
       age int
);

并且向里面插入一下测试数据:

insert into person 
  values (1, 'james', 10), 
         (2, 'bond', 20), 
         (3, 'jack', 30), 
         (4, 'lucy', 40);

然后就可以在 DLA 的数据库里面建立相应的映射表了:

create external table person (
       id int,
       name varchar(1023),
       age int
);

这样我们通过MySQL客户端连接到 DLA 数据库上面,就可以对 MySQL 数据库里面的数据进行查询了:

mysql> select * from person;
+------+-------+------+
| id   | name  | age  |
+------+-------+------+
|    1 | james |   10 |
|    2 | bond  |   20 |
|    3 | jack  |   30 |
|    4 | lucy  |   40 |
+------+-------+------+
4 rows in set (0.35 sec)

关于我们

数据湖分析Data Lake Analytics简介

欢迎大家使用数据湖分析(DLA),DLA不仅仅便宜,且快,且方便,专为阿里云数据湖分析方案而生

  • 支持自建、托管RDS、NoSQL、OSS(JSON、CSV、Parquet等格式)多种数据源分析
  • 支持按量 按照扫描量 的计费方式,准入门槛0元,提供的Serverless的弹性服务为按需收费,不需要购买固定的资源,完全契合业务潮汐带来的资源波动,满足弹性的分析需求,同时极大地降低了运维成本和使用成本
  • 平台底层托管大集群且自动弹性,在一定数据量情况下,分析性能比自建小集群高出400%
  • 支持一键 把 MySQL、PG、SqlServer、PolarDb数据库 拖到DLA,再分析,解决原MySQL不敢分析的问题。 DLA 分析性能TPC-H 10G情况 比原MySQL 8c16g 等高出10倍,数据量越大,MySQL性能越差,在1TB数据量下,原MySQL基本跑不出来

欢迎大家群内咨询

image

相关实践学习
AnalyticDB MySQL海量数据秒级分析体验
快速上手AnalyticDB MySQL,玩转SQL开发等功能!本教程介绍如何在AnalyticDB MySQL中,一键加载内置数据集,并基于自动生成的查询脚本,运行复杂查询语句,秒级生成查询结果。
阿里云云原生数据仓库AnalyticDB MySQL版 使用教程
云原生数据仓库AnalyticDB MySQL版是一种支持高并发低延时查询的新一代云原生数据仓库,高度兼容MySQL协议以及SQL:92、SQL:99、SQL:2003标准,可以对海量数据进行即时的多维分析透视和业务探索,快速构建企业云上数据仓库。 了解产品 https://www.aliyun.com/product/ApsaraDB/ads
相关文章
|
4天前
|
SQL 关系型数据库 MySQL
MySQL 窗口函数详解:分析性查询的强大工具
MySQL 窗口函数从 8.0 版本开始支持,提供了一种灵活的方式处理 SQL 查询中的数据。无需分组即可对行集进行分析,常用于计算排名、累计和、移动平均值等。基本语法包括 `function_name([arguments]) OVER ([PARTITION BY columns] [ORDER BY columns] [frame_clause])`,常见函数有 `ROW_NUMBER()`, `RANK()`, `DENSE_RANK()`, `SUM()`, `AVG()` 等。窗口框架定义了计算聚合值时应包含的行。适用于复杂数据操作和分析报告。
37 11
|
7天前
|
存储 关系型数据库 MySQL
mysql怎么查询longblob类型数据的大小
通过本文的介绍,希望您能深入理解如何查询MySQL中 `LONG BLOB`类型数据的大小,并结合优化技术提升查询性能,以满足实际业务需求。
36 6
|
1月前
|
存储 Oracle 关系型数据库
【赵渝强老师】MySQL InnoDB的数据文件与重做日志文件
本文介绍了MySQL InnoDB存储引擎中的数据文件和重做日志文件。数据文件包括`.ibd`和`ibdata`文件,用于存放InnoDB数据和索引。重做日志文件(redo log)确保数据的可靠性和事务的持久性,其大小和路径可由相关参数配置。文章还提供了视频讲解和示例代码。
141 11
【赵渝强老师】MySQL InnoDB的数据文件与重做日志文件
|
1月前
|
SQL 流计算 关系型数据库
基于OpenLake的Flink+Paimon+EMR StarRocks流式湖仓分析
阿里云OpenLake解决方案建立在开放可控的OpenLake湖仓之上,提供大数据搜索与AI一体化服务。通过元数据管理平台DLF管理结构化、半结构化和非结构化数据,提供湖仓数据表和文件的安全访问及IO加速,并支持大数据、搜索和AI多引擎对接。本文为您介绍以Flink作为Openlake方案的核心计算引擎,通过流式数据湖仓Paimon(使用DLF 2.0存储)和EMR StarRocks搭建流式湖仓。
356 4
基于OpenLake的Flink+Paimon+EMR StarRocks流式湖仓分析
|
19天前
|
SQL 关系型数据库 MySQL
mysql分页读取数据重复问题
在服务端开发中,与MySQL数据库进行数据交互时,常因数据量大、网络延迟等因素需分页读取数据。文章介绍了使用`limit`和`offset`参数实现分页的方法,并针对分页过程中可能出现的数据重复问题进行了详细分析,提出了利用时间戳或确保排序规则绝对性等解决方案。
|
24天前
|
关系型数据库 MySQL 数据库
GBase 数据库如何像MYSQL一样存放多行数据
GBase 数据库如何像MYSQL一样存放多行数据
|
1月前
|
缓存 NoSQL 关系型数据库
Redis和Mysql如何保证数据⼀致?
在项目中,为了解决Redis与Mysql的数据一致性问题,我们采用了多种策略:对于低一致性要求的数据,不做特别处理;时效性数据通过设置缓存过期时间来减少不一致风险;高一致性但时效性要求不高的数据,利用MQ异步同步确保最终一致性;而对一致性和时效性都有高要求的数据,则采用分布式事务(如Seata TCC模式)来保障。
64 14
|
1月前
|
SQL 前端开发 关系型数据库
SpringBoot使用mysql查询昨天、今天、过去一周、过去半年、过去一年数据
SpringBoot使用mysql查询昨天、今天、过去一周、过去半年、过去一年数据
60 9
|
1月前
|
SQL 关系型数据库 MySQL
定时任务频繁插入数据导致锁表问题 -> 查询mysql进程
定时任务频繁插入数据导致锁表问题 -> 查询mysql进程
50 1
|
1月前
|
SQL 关系型数据库 MySQL
mysql数据误删后的数据回滚
【11月更文挑战第1天】本文介绍了四种恢复误删数据的方法:1. 使用事务回滚,通过 `pymysql` 库在 Python 中实现;2. 使用备份恢复,通过 `mysqldump` 命令备份和恢复数据;3. 使用二进制日志恢复,通过 `mysqlbinlog` 工具恢复特定位置的事件;4. 使用延迟复制从副本恢复,通过停止和重启从库复制来恢复数据。每种方法都有详细的步骤和示例代码。
277 2
下一篇
DataWorks