手机扫一扫,现实物体隔空「复制粘贴」进电脑,北大校友的AI新研究,现在变成AR酷炫应用

简介: 全程不到10秒

云栖号资讯:【点击查看更多行业资讯
在这里您可以找到不同行业的第一手的上云资讯,还在等什么,快来!

编者按:本文来自微信公众号“量子位”(ID:QbitAI),作者:十三白交,36氪经授权发布。

魔法变现实,酷炫又实用。

还记得两年前,Zach King(男巫)的爆红魔术吗?

不仅从纸直接蹦出一个手机,还直接扔进了电脑里形成虚拟的天猫页面。

v2_15be3944370f44359f6d06dce643330f_img_000

现在,不用去羡慕男巫了,人人都可以把身边的东西“扔到”电脑里,而且一部手机就能搞定!

这就是来自34岁法国设计师Cyril Diagne的最新AR黑科技——AR Cut & Paste,将身边的事物“一键”复制粘贴到电脑上,整个完成时间不到10s。

比Ctrl+C和Ctrl+V还要爽快!

比如,拿手机扫一扫书上的模型图片,再把手机对准电脑屏幕,模型瞬间就复制到了电脑。

v2_a5389fcc8d654200b6915cb5fc919528_img_000

书上的人物也不在话下。

v2_88daad0b6e42447cb0c4d7fb45bf9a36_img_000

就有网友说道:连这个黑发小哥的头发都能识别出来,太神奇了。

v2_502cdcd40b6e4e2da0b4e76e557e3a81_img_000

当然,手写的笔记,也可以复制粘贴到电脑中。

v2_ec6c4e38d6024032abf682fc480115a0_img_000

他在Github上分享了他的AR新技术,已经狂揽7K颗小星星;而且在Reddit上分享不到14小时,就获得了近4K的点赞量。

v2_d60e537904db46c3bdc0791d9b5becb1_img_000

即使Cyril表示目前仅仅能在Photoshop中实现,但未来——肯定会有更多不同的输出方式。

只是现在,这项AR黑科技——魔法一样的新技术,只要你想,也能复刻。

简单四步,开启“复制粘贴”新世界

小哥非常热心地在GitHub中,描述了AR Cut & Paste的“上手指南”。

首先要强调的是,这是一个研究原型,而不是针对消费者或者Photoshop用户的工具。

AR Cut & Paste原型包含3个独立的模块。

移动应用(The mobile app)

  • 可以查看GitHub中/app文件夹,了解如何将App部署到手机中。

本地服务器(The local server)

  • 手机APP与Photoshop的接口。
  • 使用屏幕点(screenpoint)找到摄像机在屏幕上指向的位置。
  • 可查看/server文件夹,了解关于本地服务器的配置说明。

目标检测 / 背景移除服务(The object detection / background removal service)

  • 目前,显著性检测和背景移除,是委托给一个外部服务来完成。
  • 如果直接在移动应用中使用类似DeepLap这样的技术会简单很多。但这还没有在这个repo中实现。

第一步:配置Photoshop

在Photoshop软件首选项(Preferences)中,找到增效工具(Plug-ins)。

v2_4d423c1b8c3e41aeadb805001b99e97d_img_000

点击启用远程连接(Remote Connection),并设置密码。

v2_fd7a8539109a41a3a6cebec86e0b7ce6_img_000

这里需要确保一点,PS文档中的设置要与server/src/ps.py中的设置一致,否则只会粘贴一个空层。

此外,文档需要一些背景,如果只是白色背景,SIFT可能没有足够能力来做一个正确的匹配。

第二步:设置外部显著性目标检测服务

如上所述,目前,必须使用BASNet-HTTP封装器(需要CUDA GPU)作为外部HTTP服务,部署BASNet模型。

将需要部署的服务URL来配置本地服务器。如果在本地服务的同一台计算机上运行BASNet,请确保配置不同的端口。

第三步:配置并运行本地服务器

这一步的详细文档,在GitHub项目中的/server文件夹中,包含“安装”和“运行”两个步骤。

安装代码如下:

virtualenv -p python3.7 venvsource venv/bin/activatepip install -r requirements.txt

运行代码如下:

python src/main.py —basnet_service_ip=”http://X.X.X.X“ —basnet_service_host=”basnet-http.default.example.com” —photoshop_password 123456

其中,BASNET_SERVICE_HOST是可选的,只有在使用Knative / Cloud Run等入口网关在平台上部署服务时才需要。

以及,用Photoshop远程连接密码替换123456。

第四步:配置并运行移动App

安装代码如下:

npm install

然后更新component/Server.tsx中的IP地址,使其指向运行本地服务器的计算机IP:

3: const URL = “http://192.168.1.29:8080“;

运行代码如下:

npm start

OK!开启“复制粘贴”新世界,就是这么简单!

但如果你希望“知其然更知其所以然”,别眨眼,接着往下看。

如何做到隔空「复制粘贴」?

这个神奇的AR黑科技背后的主要技术,刚开始采用的是一个叫做BASNet的显著目标检测方法。

v2_c82f6e1fb3b24104a0152f0c78484632_img_000

这篇研究入围了CVPR 2019,而且论文一作还是位华人小哥哥——秦雪彬,已经于今年2月在加拿大阿尔伯塔大学拿到了博士学位,硕士就读于北京大学。

v2_f70ee2d3484441b39800e560b4460b4b_img_000

BASNet的核心框架如下图所示,主要由2个模块组成:

v2_b49a94f7544c4a3897e2fc0b94318d30_img_000

第一个模块是预测模块,这是一个类似于U-Net的密集监督的Encoder-Decoder网络,主要功能是从输入图像中学习预测saliency map。

第二个模块是多尺度残差细化模块(RRM),主要功能是通过学习残差来细化预测模块得到的Saliency map,与groun-truth之间的残差,从而细化出预测模块的Saliency map。

而最近,这位设计师小哥哥在此基础上,针对背景移除任务,采用了更新的方法。

同样是来自秦雪彬团队,被Pattern Recognition 2020接收,这个方法叫做U2-Net,其框架如下图所示:

v2_6b1c8bb8bf294970831ed678251676ab_img_000

还与其它20个SOTA方法分别做了定量和定性比较实验,在结果上都取得了不错的结果。

v2_1eb91de8299b4be8b224f04c5e163de7_img_000


v2_3c71c81a4fc245f79fc00afdd5717239_img_000

在下面的定性实验中,也可以比较明显的看到,该方法所提取出来的目标,更加细粒度和精确。

v2_1bc8a6ba97a44e10b46b5602bf5731e5_img_000

那么,北大校友的新方法,又是如何被法国设计师Cyril Diagne搞成黑科技应用的?

兼职写代码的法国设计师

原因无他,Cyril Diagne就是这样一个懂程序、搞设计,关注前沿研究进展的艺术家呀。

如果你关注他的社交动态,也都是天马行空的。

是那种从“诗词歌赋”到“人生哲学”,从“服装设计”到AR黑科技的妙人。

v2_19ab27a4694941f5a00cbeb0089a2337_img_000

Cyril Diagne,现居法国巴黎,除了设计师,程序员,还是洛桑艺术州立大学(ECAL)媒体于交互设计系的教授及主管。

2008年从巴黎Les Gobelins学校毕业以后,跟5位同学创立了艺术机构,致力于实现科技与艺术之间的创意交互,也奠定了他以后的艺术生涯,注定与科技密不可分。

2015年起,Cyril加入了谷歌文化驻巴黎的实验室。

与此同时,他还不断的在Gitbub上分享他的新成果。此前,他就曾在Github上发布了一些实用的小工具。

比如,一个可在Instagram页面的照片上添加3D效果的chrome扩展程序。

v2_bc2ca59ec2d24d38bf2f984d2e1b6372_img_000

在Web浏览器上直接用AR涂鸦你的脸。

v2_34631463a07549178b20fea4b26fc9fd_img_000

输入图像转3D照片。

v2_040ce7f0fd474211ba4e5142bdfcd4d5_img_000

总之,想法多、经历丰富,还懂技术和审美……

所以现在搞出AR复制这样的奇妙应用,打开一扇新大门,也让一众网友服服气气。

也算是把北大校友小哥的牛X研究,推到了更牛X的产品应用入口。

虽然还只是牛刀小试,但前景却妥妥无限可能。

你觉得这项黑科技,还能怎么用?怎么玩?

【云栖号在线课堂】每天都有产品技术专家分享!
课程地址:https://yqh.aliyun.com/live

立即加入社群,与专家面对面,及时了解课程最新动态!
【云栖号在线课堂 社群】https://c.tb.cn/F3.Z8gvnK

原文发布时间:2020-05-11
本文作者:量子位
本文来自:“36kr”,了解相关信息可以关注“36kr

相关文章
|
21天前
|
数据采集 自然语言处理 安全
控制电脑手机的智能体人人都能造,微软开源OmniParser
微软研究团队推出OmniParser,旨在提升GPT-4V等多模态模型在用户界面操作方面的性能。通过解析用户界面截图为结构化元素,OmniParser显著增强了模型的交互能力,使其在多种基准测试中表现出色。该技术开源,促进了社区合作与技术创新,但同时也面临数据质量、计算资源及安全隐私等挑战。
47 14
|
1月前
|
Web App开发 定位技术 iOS开发
Playwright 是一个强大的工具,用于在各种浏览器上测试应用,并模拟真实设备如手机和平板。通过配置 `playwright.devices`,可以轻松模拟不同设备的用户代理、屏幕尺寸、视口等特性。此外,Playwright 还支持模拟地理位置、区域设置、时区、权限(如通知)和配色方案,使测试更加全面和真实。例如,可以在配置文件中设置全局的区域设置和时区,然后在特定测试中进行覆盖。同时,还可以动态更改地理位置和媒体类型,以适应不同的测试需求。
Playwright 是一个强大的工具,用于在各种浏览器上测试应用,并模拟真实设备如手机和平板。通过配置 `playwright.devices`,可以轻松模拟不同设备的用户代理、屏幕尺寸、视口等特性。此外,Playwright 还支持模拟地理位置、区域设置、时区、权限(如通知)和配色方案,使测试更加全面和真实。例如,可以在配置文件中设置全局的区域设置和时区,然后在特定测试中进行覆盖。同时,还可以动态更改地理位置和媒体类型,以适应不同的测试需求。
72 1
|
2月前
|
机器学习/深度学习 vr&ar 光互联
ACM TOG:仅通过手机拍照就可以对透明物体进行三维重建
【10月更文挑战第20天】近期发表在ACM TOG上的论文《NU-NeRF: Neural Reconstruction of Nested Transparent Objects with Uncontrolled Capture Environment》提出了一种名为NU-NeRF的神经重建方法,能够在无需特殊设备的情况下,对嵌套的复杂透明物体进行高质量的三维重建。该方法通过分离反射和折射部分,结合神经符号距离场和神经渲染技术,实现了高保真的外表面几何形状和内部表面重建。实验结果表明,NU-NeRF在合成和真实场景中均表现出色,具有广泛的应用前景。
68 3
|
2月前
|
Web App开发 缓存 前端开发
拿下奇怪的前端报错(六):多摄手机webrtc拉取视频流会导致应用崩溃,从而无法进行人像扫描
本文介绍了一种解决手机摄像头切换导致应用崩溃的问题的方法。针对不支持facingMode配置的四摄手机,通过缓存和序号切换的方式,确保应用在特定设备上不会频繁崩溃,提升用户体验。
|
3月前
|
移动开发 Android开发 数据安全/隐私保护
移动应用与系统的技术演进:从开发到操作系统的全景解析随着智能手机和平板电脑的普及,移动应用(App)已成为人们日常生活中不可或缺的一部分。无论是社交、娱乐、购物还是办公,移动应用都扮演着重要的角色。而支撑这些应用运行的,正是功能强大且复杂的移动操作系统。本文将深入探讨移动应用的开发过程及其背后的操作系统机制,揭示这一领域的技术演进。
本文旨在提供关于移动应用与系统技术的全面概述,涵盖移动应用的开发生命周期、主要移动操作系统的特点以及它们之间的竞争关系。我们将探讨如何高效地开发移动应用,并分析iOS和Android两大主流操作系统的技术优势与局限。同时,本文还将讨论跨平台解决方案的兴起及其对移动开发领域的影响。通过这篇技术性文章,读者将获得对移动应用开发及操作系统深层理解的钥匙。
107 12
|
2月前
|
人工智能 自然语言处理 机器人
“今日热点:AI像人类一样使用手机和电脑”,魔搭社区的开源项目已先行一步
今天,Claude发布了Computer Use的新功能,可以让AI像人一样使用电脑!
|
2月前
|
Android开发 Swift iOS开发
python 基于电脑蓝牙连接获取手机的实时数据
python 基于电脑蓝牙连接获取手机的实时数据
71 0
|
3月前
|
自然语言处理 决策智能 Python
同时操控手机和电脑,100项任务,跨系统智能体评测基准有了
【9月更文挑战第9天】近年来,随着人工智能技术的进步,自主智能体的应用日益广泛。为解决现有评测基准的局限性,研究人员推出了CRAB(Cross-environment Agent Benchmark),这是一种支持跨环境任务的新框架,结合了基于图的精细评估方法和高效的任务构建机制。CRAB框架支持多种设备并可轻松扩展至任何具备Python接口的环境。首个跨平台基准CRAB-v0包含100项任务,实验显示GPT-4单智能体在完成率方面表现最佳。CRAB框架为智能体研究提供了新机遇,但也面临计算资源和评估准确性等方面的挑战。
76 9
|
6月前
|
Web App开发 移动开发 编解码
FFmpeg开发笔记(三十二)利用RTMP协议构建电脑与手机的直播Demo
本文讨论了实时数据传输在互联网中的重要性,如即时通讯和在线直播。一对一通信通常使用WebRTC技术,但一对多直播需要流媒体服务器和特定协议,如RTSP、RTMP、SRT或RIST。RTMP由于其稳定性和早期普及,成为国内直播的主流。文章通过实例演示了如何使用OBS Studio和RTMP Streamer进行RTMP推流,并对比了不同流媒体传输协议的优缺点。推荐了两本关于FFmpeg和Android开发的书籍以供深入学习。
106 0
FFmpeg开发笔记(三十二)利用RTMP协议构建电脑与手机的直播Demo
|
6月前
|
网络协议 Android开发 数据安全/隐私保护
Android手机上使用Socks5全局代理-教程+软件
Android手机上使用Socks5全局代理-教程+软件
5101 2