中台专家谈:企业如何进行数据资产管理

本文涉及的产品
智能数据建设与治理Dataphin,200数据处理单元
可视分析地图(DataV-Atlas),3 个项目,100M 存储空间
简介: 大数据需要耗费大量的计算存储资源,如果没有合理的资产管理,很可能在大数据还没来得及发挥巨大作用时就已经消耗完业务带来的利润。

前言:
关于数智化转型、数据中台内容探讨可扫码加入数智化转型俱乐部哦

446370221436dc0ad0069d92481a07d2ff6828ec.jpeg
阿里云数据中台官网 https://dp.alibaba.com/index


正文:

大数据离不开计算和存储,因此大数据建设与成本强挂钩。大数据需要耗费大量的计算存储资源,如果没有合理的资产管理,很可能在大数据还没来得及发挥巨大作用时就已经消耗完业务带来的利润。而事实上,对于企业来说,大数据很容易成为一个成本中心。

因此,在企业进行数据中台建设中,既能收获大数据作为资产中心所带来的红利,也能体验到大数据成为成本中心后所带来的痛苦。这种痛苦除了与资金投入密切相关外,也会直接影响甚至决定着大数据建设的质量和效率。

梳理数据的血缘关系,或是控制成本是不可舍弃的,但不是目的,更不适合作为驱动力,如果以此为驱动力,很容易让大数据成为成本中心。我们需要转变思路,大数据需要从现有的成本中心变为资产中心,然后,拥有资产本质的大数据将由成本中心变为利润中心。

将成本投入与数据应用产生的价值挂钩的投入产出比更值得花力气去关注,其核心就是以资产为驱动力,而资产直接对标的就是价值。大数据一定要有应用和价值的探索,而大数据的应用和价值的探索基本上都会涉及大数据的来龙去脉。因此数据资产管理伴随着大数据相关的成本、应用、价值探索等产生了,并伴随着数据中台建设的全过程。

在企业中,不同角色对于数据资产能给他带来的价值点是不同的:

  • CEO或业务负责人
    他们更想知道企业到底有多少数据资产,分布状况如何,ROI情况如何。
  • 一线业务人员
    他们不在乎有多少张数据表,他们想要的是清晰查看和快速的使用数据资产。
  • CTO或CFO
    他们需要准确评估及合理应用数据资产,因此他们关心的是数据资产是否被合理的应用到合适的地方,哪些地方应用使用数据的却没用,哪些地方使用数据的代价过高。
  • 一线技术人员或技术负责人
    他们需要智能高效的工具治理数据资产。

数据资产管理领域重要的三个方向包括:资产分析、资产治理、资产应用,并需要基于这三个方向的技术研究和实战,将流程、经验、标准和规范等产品化,最终构成企业统一的数据资产管理平台。

◆ 资产分析

资产分析包括了资产盘点和资产评估两部分。资产盘点是为了让使用数据的人员能更好的理解数据,可通过知识图谱进行内容的理解和推理或构建企业资产目录;资产评估则对资产的活性、投入产出比进行评估。

下图为资产分析内容:
阿里旺旺图片20200507211801.jpg

资产分析具体包括以下三部分内容:

  • 资产分析对象
    以企业全域大数据作为资产分析对象。
  • 多维度数据资产分析体系
    基于资产分析对象,以基层元数据、用户行为日志、数据知识图谱为素材,通过综合人脑和机器学习算法是手段,充分理解数据资产内容,完成各类数据资产分析,理解数据内容;

用户协同,并建立数据确信机制,进而实现数据内容理解与数据确信机制相辅相成的多维数据资产分析体系。

  • 资产分析产品化
    基于多维度数据资产分析体系,在技术端和用户看不到的产品背后进行资产盘点、资产评估和资产探查,从而向用户输出易读、易懂的资产报告;

提供资产导航服务,方便用户通过多种方式找到想要的数据及其详情;

提供特定专题的资产分析服务,如核心资产分析、用户自定义资产分析等;

提供简单易用、有助于资产分析和产品化的配置管理,如数据类目配置管理、数据资产打标签等管理。

◆ 资产管理

资产治理包括对计算、存储、治理、模型、安全、成本等领域进行治理,并形成有效的智能治理闭环,将治理方法论沉淀为工具产品输出。

下图为资产治理体系内容:
阿里旺旺图片20200507211801.jpg

资产治理具体包括以下两部分内容:

  • 资产治理闭环体系
    建立包括现状分析、问题诊断、治理优化、效果反馈在内的资产治理闭环体系;

对各环节内容进行丰富和完善,问题诊断不仅仅包括计算存储资源诊断,还包括数据质量与数据安全的领域诊断。

  • 资产治理多维度输出
    资产治理致力于将治理闭环能力开放。通过标准输出、定制产品、能力输出、构建协作机制等维度进行输出。

◆资产应用

资产应用通过全链路实现端到端打通,评估应用投入产出比,并进行安全的检测管控。

下图为资产应用内容:
222.jpg

资产应用具体包括以下两部分内容:

  • 资产应用全链路体系
    通过全链路数据跟踪,将数据从获取到数据处理再到数据应用,实现端到端的打通。
  • 资产应用产品化
    围绕最终用户,以数据资产的本质为驱动力,提供应用分析产品。包括全链路“血缘”关系,清晰展示数据的来龙去脉;
  • 全链路保障:让用户清楚知道各种保障措施和问题所在,以及为何资产应用能够稳定、健康的运行;
  • 访问分析:全面分析数据应用到的产品及场景的被访问情况;
  • ROI评估:为用户指明当前产品或场景化应用的投入产出情况。

通过资产分析、资产治理、资产应用,我们努力让大数据从成本中心走向资产中心,让企业致力于数据资产建设和管理。通过云上数据中台产品Dataphin中的“数据资产管理”模块,将我们数据中台对大数据管理的认知和沉淀输出给云上企业,让企业数据可获得全盘把握及全盘分析、清晰查看及快速使用、准确评估及合理应用、智能诊断及高效治理,让企业大数据释放出应有的价值。

云上数据中台产品Dataphin通过将数据资产管理方法产品化的方式,实现了可满足企业各种角色对数据资产的诉求,使得企业能“全盘把握与科学分析数据资产”、“清晰查看及快速使用数据资产”、“智能诊断与高效管理数据资产”、“准确评估及合理应用数据资产”。
333.jpg

内容来源:阿里云数据中台
作者:阿里云数据中台专家柯根

相关实践学习
阿里云百炼xAnalyticDB PostgreSQL构建AIGC应用
通过该实验体验在阿里云百炼中构建企业专属知识库构建及应用全流程。同时体验使用ADB-PG向量检索引擎提供专属安全存储,保障企业数据隐私安全。
AnalyticDB PostgreSQL 企业智能数据中台:一站式管理数据服务资产
企业在数据仓库之上可构建丰富的数据服务用以支持数据应用及业务场景;ADB PG推出全新企业智能数据平台,用以帮助用户一站式的管理企业数据服务资产,包括创建, 管理,探索, 监控等; 助力企业在现有平台之上快速构建起数据服务资产体系
相关文章
|
3月前
|
数据采集 搜索推荐 数据挖掘
不同的企业如何量身制定数据治理体系
数据治理是一个持续优化的过程。企业需要不断评估数据治理效果并进行调整和完善。可以定期召开数据治理会议,总结数据治理工作的经验和教训,并制定相应的改进措施。同时,企业可以引入先进的数据治理技术和工具,提高数据治理的效率和效果。
|
8月前
|
UED
瓴羊Dataphin V3.8 升级速递丨强化数据治理、提升标签洞察力、灵活管理诉求……
瓴羊Dataphin V3.8 升级速递丨强化数据治理、提升标签洞察力、灵活管理诉求……
|
8月前
|
数据采集 存储 SQL
数据资产入表在即,企业如何把握机遇,进行数据资产管理?
数据资产入表在即,对于企业而言,如何在充满机遇的环境下调整策略、适应变化,成为了焦点问题。数据资产入表,离不开前期扎实的数据治理准备,那么究竟应然如何实现数据资产的规范化管理?本文告诉你答案。
317 0
|
数据采集 数据安全/隐私保护 监控
带你读《构建企业级好数据(Dataphin智能数据建设与治理白皮书)》——5. 资产治理:高价值数据,助力企业高质量发展
带你读《构建企业级好数据(Dataphin智能数据建设与治理白皮书)》——5. 资产治理:高价值数据,助力企业高质量发展
391 0
|
数据采集 人工智能 数据管理
数据资产化的前提-浅谈数据治理体系的建设
数据资产化的前提-浅谈数据治理体系的建设
|
供应链 安全 搜索推荐
数据资产建设的灵魂三连问
数据资产建设的灵魂三连问
|
数据采集 存储 供应链
大型集团企业数据治理实践,推进全域数据资产体系建设 | 数字化标杆
数据治理是推动大型集团企业转型升级、提升竞争优势、实现高质量发展的重要引擎。沉淀了丰富的集团型企业数据治理项目经验,助力客户构建全域数据共享中心,实现数字化升级。
429 0
大型集团企业数据治理实践,推进全域数据资产体系建设 | 数字化标杆
|
数据采集 存储 人工智能
如何将数据作为战略资产进行管理
在当今世界,很难找到没有积极重新考虑数据在其商业模式中所扮演的角色的组织。
如何将数据作为战略资产进行管理
|
存储 运维 监控
云上企业财务经营管理解决方案-企业多组织|学习笔记
快速学习云上企业财务经营管理解决方案-企业多组织。
云上企业财务经营管理解决方案-企业多组织|学习笔记
|
运维 供应链 安全
企业云管理服务架构师(CSE)系列之从销售视角看等级保护的云服务过程的意义
记一次给企业客户做阿里云等保服务的咨询、交付的心得总结,希望对大家有帮助
413 0
企业云管理服务架构师(CSE)系列之从销售视角看等级保护的云服务过程的意义