如何从 8 个维度全面比较机器学习算法?

简介: 人类发明的机器学习(ML)算法简直数不胜数。当然,大多数时候只有一小部分被用于研究和工业。然而,对于个人来说,理解并记住所有这些 ML 模型的细节仍然有点困难。有些人可能会有一个错误的印象,认为所有这些算法都是完全不相关的。

云栖号资讯:【点击查看更多行业资讯
在这里您可以找到不同行业的第一手的上云资讯,还在等什么,快来!

人类发明的机器学习(ML)算法简直数不胜数。当然,大多数时候只有一小部分被用于研究和工业。然而,对于个人来说,理解并记住所有这些 ML 模型的细节仍然有点困难。有些人可能会有一个错误的印象,认为所有这些算法都是完全不相关的。更重要的是,当两种算法似乎都有效时,如何选择使用算法 A,还是 B?

652239CA_6B5A_4885_850D_D92B0AACA536

人类发明的机器学习(ML)算法简直数不胜数。当然,大多数时候只有一小部分被用于研究和工业。然而,对于个人来说,理解并记住所有这些 ML 模型的细节仍然有点困难。有些人可能会有一个错误的印象,认为所有这些算法都是完全不相关的。更重要的是,当两种算法似乎都有效时,如何选择使用算法 A,还是 B?

这篇文章的目的是为读者提供一个不同的角度来看待 ML 算法。有了这些角度,算法可以在同样的维度上进行比较,并且可以很容易地进行分析。本文在撰写时考虑了两个主要的 ML 任务——回归和分类。

时间复杂度

在 RAM 模型下,算法所花费的“时间”是由算法的基本运算来度量的。虽然用户和开发人员可能更关心算法用于训练模型的挂钟时间,但在比较模型用于训练的时间时,使用最坏情况下的计算时间复杂度更公平。使用计算复杂度的好处是,可以忽略运行时使用的计算机能力、架构以及底层编程语言等的差异,允许用户关注算法基本操作的基本差异。

注意,在训练和测试期间,时间复杂度可能差别很大。例如,像线性回归这样的参数模型可能训练时间很长,但它们在测试期间很高效。

空间复杂度

空间复杂度根据输入大小度量算法运行需要多少内存。如果 ML 算法将太多数据加载到机器的工作内存中,则 ML 程序将无法成功运行。

样本复杂度

样本复杂度度量为了保证训练的网络可以有效的泛化所需的训练样本量。例如,深度神经网络需要大量的训练数据来训练,因此,具有较高的样本复杂度。

偏差 - 方差权衡

不同的 ML 算法会有不同的偏差 - 方差权衡。偏差误差来自于模型偏向于特定解或假设的事实。例如,在非线性数据上拟合线性决策边界时,偏差较大。另一方面,方差测量模型方差带来的误差。它是模型预测与期望模型预测的均方差。

AE61DDB8_5C61_4999_BDFF_56BCBE9E7725

不同的模型做出了不同的偏差 - 方差权衡。例如,朴素贝叶斯被认为是一个高偏差、低方差的模型,因为它所做的假设过于简单。

在线和离线

在线和离线学习是指机器学习软件学习更新模型的方式。在线学习意味着可以一次提供一条训练数据,以便在获得新数据时立即更新参数。而离线学习为了更新参数,需要在新数据出现时重新训练(重新训练整个模型)。如果一个算法是在线的,那么它应该是高效的,因为在生产中使用的参数可以实时更新,以反映新数据的影响。

ID3 决策树算法是离线学习的一个例子。ID3 的工作方式是查看全局数据并进行贪婪搜索以最大化信息增益。当新的数据点出现时,整个模型需要重新训练。而随机梯度下降法(SGD)是一种在线算法,可以在新数据到达时更新训练模型的参数。

并行性

并行算法是指一个算法可以在给定的时间内完成多个操作。这可以通过将工作负载分配到不同的工作者(如单机或多机中的处理器)来实现。像梯度增强决策树(GBDT)这样的序列算法很难并行化,因为下一个决策树是根据前一个决策树的误差构建的。

K 近邻(k-NN)模型的特性让它可以轻松地在多台机器上同时运行。这是在机器学习中使用 MapReduce 的一个经典例子。

参数化

虽然参数模型的定义并不严格,但是这种模型分类在统计学习领域中得到了广泛的应用。简单地说,参数化模型是指模型的参数数量是固定的,而非参数化模型的参数数量随着数据的增加而增加。另一种定义参数化模型的方法是基于其对数据概率分布形状的基本假设。如果没有给出假设,则为非参数化模型。

参数化模型在机器学习中很常见。例如线性回归、神经网络以及许多其他 ML 模型。另一方面,k-NN 和 SVM(支持向量机)是非参数化模型。

方法、假设和目标

本质上,所有的机器学习问题都是最优化问题。在机器学习模型或需要优化的潜在目标函数背后,总是有一种方法。对算法背后的主要思想进行比较,可以增强算法的合理性。

例如,线性回归模型的目标是最小化预测的平方误差和实际值(均方误差,MSE),而 Lasso 回归的目标是最小化 MSE,同时通过添加额外的正则化项来限制学习的参数,防止过拟合。

总之,ML 算法可以根据不同的标准进行分析。这些标准实际上有助于度量不同 ML 模型的有效性和效率。

你能想到其他比较 ML 算法的视角吗?

【云栖号在线课堂】每天都有产品技术专家分享!
课程地址:https://yqh.aliyun.com/zhibo

立即加入社群,与专家面对面,及时了解课程最新动态!
【云栖号在线课堂 社群】https://c.tb.cn/F3.Z8gvnK

原文发布时间:2020-04-07
本文作者:garychl
本文来自:“InfoQ”,了解相关信息可以关注“InfoQ

相关文章
|
29天前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
95 4
|
8天前
|
算法
PAI下面的gbdt、xgboost、ps-smart 算法如何优化?
设置gbdt 、xgboost等算法的样本和特征的采样率
22 2
|
25天前
|
机器学习/深度学习 算法 数据挖掘
C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出
本文探讨了C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出。文章还介绍了C语言在知名机器学习库中的作用,以及与Python等语言结合使用的案例,展望了其未来发展的挑战与机遇。
43 1
|
1月前
|
机器学习/深度学习 自然语言处理 算法
深入理解机器学习算法:从线性回归到神经网络
深入理解机器学习算法:从线性回归到神经网络
|
1月前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
90 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
1月前
|
机器学习/深度学习 算法
深入探索机器学习中的决策树算法
深入探索机器学习中的决策树算法
41 0
|
1月前
|
机器学习/深度学习 算法 Python
机器学习入门:理解并实现K-近邻算法
机器学习入门:理解并实现K-近邻算法
36 0
|
2月前
|
机器学习/深度学习 算法 Java
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
|
2月前
|
机器学习/深度学习 人工智能 算法
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
玉米病害识别系统,本系统使用Python作为主要开发语言,通过收集了8种常见的玉米叶部病害图片数据集('矮花叶病', '健康', '灰斑病一般', '灰斑病严重', '锈病一般', '锈病严重', '叶斑病一般', '叶斑病严重'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。再使用Django搭建Web网页操作平台,实现用户上传一张玉米病害图片识别其名称。
77 0
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
|
1月前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的决策树算法
【10月更文挑战第29天】本文将深入浅出地介绍决策树算法,一种在机器学习中广泛使用的分类和回归方法。我们将从基础概念出发,逐步深入到算法的实际应用,最后通过一个代码示例来直观展示如何利用决策树解决实际问题。无论你是机器学习的初学者还是希望深化理解的开发者,这篇文章都将为你提供有价值的见解和指导。