大学毕业做音视频开发,月入20K,你呢?

简介: ndk 音视频

音视频趋势

随着5G时代的到来,音视频领域将会大放异彩。

5G让所有人兴奋,用户期待,因为5G网络更快更稳定延迟更低。运营商和上下游产业也期待,大家都想在5G时代分一杯羹。

近几年抖音快手B站等App的火热,已经说明问题了。随着WiFi设施的全面普及,流量费用的进一步下降,使得我们随时随地刷视频成为了可能。回想起我大学时代,那个时候流量很贵,贵到什么程度呢?1M流量要10块钱!大家想一想,1M流量10块钱,1G流量1万块钱,你还敢用4G刷视频么?4G时代,大家刷短视频,5G时代,大家刷长视频。基于这个判断,音视频相关技术是未来几年的热点,除了抖音快手,新的现象级客户端有可能会出现。

作为移动开发人员,如何跟上热点学习音视频技术呢?

今天主要介绍视频入门基础知识

视频编码基础知识

视频和图像和关系

好了,刚才说了图像,现在,我们开始说视频。所谓视频,大家从小就看动画,都知道视频是怎么来的吧?没错,大量的图片连续起来,就是视频。

衡量视频,又是用的什么指标参数呢?最主要的一个,就是帧率(Frame Rate)。在视频中,一个帧(Frame)就是指一幅静止的画面。帧率,就是指视频每秒钟包括的画面数量(FPS,Frame per second)。

帧率越高,视频就越逼真、越流畅。

未经编码的视频数据量会有多大?

有了视频之后,就涉及到两个问题:

一个是存储;

二个是传输。

而之所以会有视频编码,关键就在于此:一个视频,如果未经编码,它的体积是非常庞大的。

以一个分辨率1920×1280,帧率30的视频为例:

共:1920×1280=2,073,600(Pixels 像素),每个像素点是24bit(前面算过的哦);

也就是:每幅图片2073600×24=49766400 bit,8 bit(位)=1 byte(字节);

所以:49766400bit=6220800byte≈6.22MB。

这是一幅1920×1280图片的原始大小,再乘以帧率30。

也就是说:每秒视频的大小是186.6MB,每分钟大约是11GB,一部90分钟的电影,约是1000GB。。。

吓尿了吧?就算你现在电脑硬盘是4TB的(实际也就3600GB),也放不下几部大姐姐啊!不仅要存储,还要传输,不然视频从哪来呢?如果按照100M的网速(12.5MB/s),下刚才那部电影,需要22个小时。。。再次崩溃。。。

正因为如此,屌丝工程师们就提出了,必须对视频进行编码。

什么是编码?

编码:就是按指定的方法,将信息从一种形式(格式),转换成另一种形式(格式)。视频编码:就是将一种视频格式,转换成另一种视频格式。

编码的终极目的,说白了,就是为了压缩。各种五花八门的视频编码方式,都是为了让视频变得体积更小,有利于存储和传输。

我们先来看看,视频从录制到播放的整个过程,如下:

首先是视频采集。通常我们会使用摄像机、摄像头进行视频采集。限于篇幅,我就不打算和大家解释CCD成像原理了。

采集了视频数据之后,就要进行模数转换,将模拟信号变成数字信号。其实现在很多都是摄像机(摄像头)直接输出数字信号。信号输出之后,还要进行预处理,将RGB信号变成YUV信号。

前面我们介绍了RGB信号,那什么是YUV信号呢?

简单来说,YUV就是另外一种颜色数字化表示方式。视频通信系统之所以要采用YUV,而不是RGB,主要是因为RGB信号不利于压缩。在YUV这种方式里面,加入了亮度这一概念。在最近十年中,视频工程师发现,眼睛对于亮和暗的分辨要比对颜色的分辨更精细一些,也就是说,人眼对色度的敏感程度要低于对亮度的敏感程度。

所以,工程师认为,在我们的视频存储中,没有必要存储全部颜色信号。我们可以把更多带宽留给黑—白信号(被称作“亮度”),将稍少的带宽留给彩色信号(被称作“色度”)。于是,就有了YUV。

YUV里面的“Y”,就是亮度(Luma),“U”和“V”则是色度(Chroma)。

大家偶尔会见到的Y'CbCr,也称为YUV,是YUV的压缩版本,不同之处在于Y'CbCr用于数字图像领域,YUV用于模拟信号领域,MPEG、DVD、摄像机中常说的YUV其实就是Y'CbCr。

image

▲ YUV(Y'CbCr)是如何形成图像的

YUV码流的存储格式其实与其采样的方式密切相关。(采样,就是捕捉数据)

主流的采样方式有三种:

1)YUV4:4:4;

2)YUV4:2:2;

3)YUV4:2:0。

image

具体解释起来有点繁琐,大家只需记住,通常用的是YUV4:2:0的采样方式,能获得1/2的压缩率。

这些预处理做完之后,就是正式的编码了。

5、视频编码的实现原理

5.1 视频编码技术的基本原理

前面我们说了,编码就是为了压缩。要实现压缩,就要设计各种算法,将视频数据中的冗余信息去除。当你面对一张图片,或者一段视频的时候,你想一想,如果是你,你会如何进行压缩呢?

▲ 对于新垣女神,我一bit也不舍得压缩…

我觉得,首先你想到的,应该是找规律。是的,寻找像素之间的相关性,还有不同时间的图像帧之间,它们的相关性。

举个例子:如果一幅图(1920×1080分辨率),全是红色的,我有没有必要说2073600次[255,0,0]?我只要说一次[255,0,0],然后再说2073599次“同上”。

如果一段1分钟的视频,有十几秒画面是不动的,或者,有80%的图像面积,整个过程都是不变(不动)的。那么,是不是这块存储开销,就可以节约掉了?

▲ 以上图为例,只有部分元素在动,大部分是不动的

是的,所谓编码算法,就是寻找规律,构建模型。谁能找到更精准的规律,建立更高效的模型,谁就是厉害的算法。

通常来说,视频里面的冗余信息包括:

视频编码技术优先消除的目标,就是空间冗余和时间冗余。

接下来,就和大家介绍一下,究竟是采用什么样的办法,才能干掉它们。以下内容稍微有点高能,不过我相信大家耐心一些还是可以看懂的。

视频编码技术的实现方法

视频是由不同的帧画面连续播放形成的。

这些帧,主要分为三类,分别是:

1)I帧;

2)B帧;

3)P帧。

I帧:是自带全部信息的独立帧,是最完整的画面(占用的空间最大),无需参考其它图像便可独立进行解码。视频序列中的第一个帧,始终都是I帧。

P帧:“帧间预测编码帧”,需要参考前面的I帧和/或P帧的不同部分,才能进行编码。P帧对前面的P和I参考帧有依赖性。但是,P帧压缩率比较高,占用的空间较小。

▲ P帧

B帧:“双向预测编码帧”,以前帧后帧作为参考帧。不仅参考前面,还参考后面的帧,所以,它的压缩率最高,可以达到200:1。不过,因为依赖后面的帧,所以不适合实时传输(例如视频会议)。

▲ B帧

通过对帧的分类处理,可以大幅压缩视频的大小。毕竟,要处理的对象,大幅减少了(从整个图像,变成图像中的一个区域)。

如果从视频码流中抓一个包,也可以看到I帧的信息,如下:

我们来通过一个例子看一下。

这有两个帧:

好像是一样的?

不对,我做个GIF动图,就能看出来,是不一样的:

人在动,背景是没有在动的。

第一帧是I帧,第二帧是P帧。两个帧之间的差值,就是如下:

也就是说,图中的部分像素,进行了移动。移动轨迹如下:

这个,就是运动估计和补偿。

当然了,如果总是按照像素来算,数据量会比较大,所以,一般都是把图像切割为不同的“块(Block)”或“宏块(MacroBlock)”,对它们进行计算。一个宏块一般为16像素×16像素。

▲ 将图片切割为宏块

好了,我来梳理一下。

对I帧的处理,是采用帧内编码方式,只利用本帧图像内的空间相关性。对P帧的处理,采用帧间编码(前向运动估计),同时利用空间和时间上的相关性。简单来说,采用运动补偿(motion compensation)算法来去掉冗余信息。

需要特别注意,I帧(帧内编码),虽然只有空间相关性,但整个编码过程也不简单。

如上图所示,整个帧内编码,还要经过DCT(离散余弦变换)、量化、编码等多个过程。限于篇幅,加之较为复杂,今天就放弃解释了。

那么,视频经过编码解码之后,如何衡量和评价编解码的效果呢?

一般来说,分为客观评价和主观评价。客观评价,就是拿数字来说话。例如计算“信噪比/峰值信噪比”。

信噪比的计算,我就不介绍了,丢个公式,有空可以自己慢慢研究...

除了客观评价,就是主观评价了。主观评价,就是用人的主观感知直接测量,额,说人话就是——“好不好看我说了算”。

学习分享

音视频,人工智能,这些是未来没办法阻挡的发展大趋势。我在猎聘网上看那些招聘岗位,要求精通NDK的薪资都在30-60K。追求高薪岗位的小伙伴,NDK开发一定要掌握并且去深挖。

题外话,虽然我在大厂工作多年,但也指导过不少同行。深知学习分享的重要性。

当程序员容易,当一个优秀的程序员是需要不断学习的,从初级程序员到高级程序员,从初级架构师到资深架构师,或者走向管理,从技术经理到技术总监,每个阶段都需要掌握不同的能力。早早确定自己的职业方向,才能在工作和能力提升中甩开同龄人。

以下是今天给大家分享的一些独家干货:

【Android高级架构思维脑图(技能树)】

【NDK学习视频】、【NDK资料包】下载地址
https://shimo.im/docs/YHJtVkC3y6qgp9xC

相关文章
|
6月前
|
编解码 算法 C++
非科班转码:格力软件开发春招面经
【2月更文挑战第25天】本文介绍2024届秋招中,格力的软件开发岗位一面的面试基本情况、提问问题等~
非科班转码:格力软件开发春招面经
|
6月前
|
大数据 网络安全
美联(蘑菇街)无线技术分享感想
美联(蘑菇街)无线技术分享感想
50 0
|
存储 运维 算法
即时通讯技术文集(第17期):社交软件红包技术专题 [共12篇]
为了更好地分类阅读 52im.net 总计1000多篇精编文章,我将在每周三推送新的一期技术文集,本次是第17 期。
138 0
|
Web App开发
喜讯来袭,推荐个神器!
喜讯来袭,推荐个神器!
134 0
喜讯来袭,推荐个神器!
今日午后直播预告:两场数字化大餐等你来!
今日下午14:30--16:00,两场数字化大餐已经为您备好,欢迎点赞关注!
今日午后直播预告:两场数字化大餐等你来!
“照骗”是如何炼成的?
从“充电一分钟,通话两小时”,到“4000万莱卡三摄,AI摄影大师”改变手机市场的,是AI。
514 0
|
SQL 关系型数据库 Unix
百花开放笑声甜,“开源萌宠”庆六一
“少年易学老难成,一寸光阴不可轻”。树叶因风而动,雏苗因土而长,兴趣要从小培养,给孩子们“施肥”也要让他们印象深刻······儿童节到来之际,云栖社区精选了18款开源软件供孩子们了解,让孩子们在萌宠的陪伴下有个不一样的“六一”。
7365 0
|
JSON API 数据格式
《进击的虫师》斗鱼颜值小姐姐的1000种自拍
想成为优秀的斗鱼主播,首先得掌握优秀的自拍技能;这次写个有意思的, 爬取斗鱼小姐姐的自拍头像... 效果图: 001 002 003 004 005 分析频道 ...
1898 0
|
API 图形学 iOS开发