数据库软件架构,到底要设计些什么?

简介: 可用性、读性能、一致性、扩展性。

一、基本概念


概念一:单库
image.png

概念二:分片
image.png

分片解决“数据量太大”这一问题,也就是通常说的“水平切分”。


一旦引入分片,势必面临“数据路由”的新问题,数据到底要访问哪个库。路由规则通常有3种方法:

(1)范围:range

优点:简单,容易扩展。

缺点:各库压力不均(新号段更活跃)。


(2)哈希:hash

优点:简单,数据均衡,负载均匀。

缺点:迁移麻烦(2库扩3库数据要迁移)。


(3)统一路由服务:router-config-server

优点:灵活性强,业务与路由算法解耦。

缺点:每次访问数据库前多一次查询。


大部分互联网公司采用的方案二:哈希路由


概念三:分组
image.png


分组解决“可用性,性能提升”这一问题,分组通常通过主从复制的方式实现。


互联网公司数据库实际软件架构是“既分片,又分组”:
image.png

数据库软件架构,究竟设计些什么呢,至少要考虑以下四点:

  • 如何保证数据可用性

  • 如何提高数据库读性能(大部分应用读多写少,读会先成为瓶颈)

  • 如何保证一致性

  • 如何提高扩展性



二、如何保证数据的可用性?

解决可用性问题的思路是:冗余


如何保证站点的可用性?冗余站点。

如何保证服务的可用性?冗余服务。

如何保证数据的可用性?冗余数据。


数据的冗余,会带来一个副作用:一致性问题。


如何保证数据库“读”高可用?

冗余读库。
image.png

冗余读库带来什么副作用?

读写有延时,数据可能不一致

上图是很多互联网公司mysql的架构,写仍然是单点,不能保证写高可用。


如何保证数据库“写”高可用?

冗余写库。
image.png


采用双主互备的方式,可以冗余写库。


冗余写库带来什么副作用?

双写同步,数据可能冲突(例如“自增id”同步冲突)。


如何解决同步冲突,有两种常见解决方案:

(1)两个写库使用不同的初始值,相同的步长来增加id:1写库的id为0,2,4,6...;2写库的id为1,3,5,7…;

(2)不使用数据的id,业务层自己生成唯一的id,保证数据不冲突;


阿里云的RDS服务号称写高可用,是如何实现的呢?

他们采用的就是类似于“双主同步”的方式(不再有从库了)。
image.png


仍是双主,但只有一个主提供读写服务,另一个主是“shadow-master”,只用来保证高可用,平时不提供服务。


master挂了,shadow-master顶上,虚IP漂移,对业务层透明,不需要人工介入。


这种方式的好处:

(1)读写没有延时,无一致性问题;

(2)读写高可用;


不足是:

(1)不能通过加从库的方式扩展读性能;

(2)资源利用率为50%,一台冗余主没有提供服务;

画外音:所以,高可用RDS还挺贵的。


三、如何扩展读性能?

提高读性能的方式大致有三种,第一种是增加索引


这种方式不展开,要提到的一点是,不同的库可以建立不同的索引。
image.png


如上图:

(1)写库不建立索引;

(2)线上读库建立线上访问索引,例如uid;

(3)线下读库建立线下访问索引,例如time;


第二种扩充读性能的方式是,增加从库


这种方法大家用的比较多,存在两个缺点:

(1)从库越多,同步越慢;

(2)同步越慢,数据不一致窗口越大;


第三种增加系统读性能的方式是,增加缓存


常见的缓存架构如下:
image.png


(1)上游是业务应用;

(2)下游是主库,从库(读写分离),缓存;


如果系统架构实施了服务化

(1)上游是业务应用;

(2)中间是服务;

(3)下游是主库,从库,缓存
image.png


业务层不直接面向db和cache,服务层屏蔽了底层db、cache的复杂性。


不管采用主从的方式扩展读性能,还是缓存的方式扩展读性能,数据都要复制多份(主+从,db+cache),一定会引发一致性问题。


四、如何保证一致性?


主从数据库的一致性,通常有两种解决方案:

(1)中间件
image.png


如果某一个key有写操作,在不一致时间窗口内,中间件会将这个key的读操作也路由到主库上。


(2)强制读主
image.png


“双主高可用”的架构,主从一致性的问题能够大大缓解。


第二类不一致,是db与缓存间的不一致。
image.png


另外建议,所有允许cache miss的业务场景,缓存中的KEY都设置一个超时时间,这样即使出现不一致,有机会得到自修复。


五、如何保障数据库的扩展性?

秒级成倍数据库扩容:

亿级数据DB秒级平滑扩容》


如果不是成倍扩容:

《100亿数据平滑数据迁移,不影响服务》


也可能,是要对字段进行扩展:

《1万属性,100亿数据,架构设计?》


这些方案,都有相关文章展开写过,本文不再赘述。


数据库软件架构,到底要设计些什么?

  • 可用性

  • 读性能

  • 一致性

  • 扩展性


希望对大家系统性理解数据库软件架构有帮助。

本文转自“架构师之路”公众号,58沈剑提供。

目录
相关文章
|
4月前
|
负载均衡 算法 关系型数据库
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
本文聚焦 MySQL 集群架构中的负载均衡算法,阐述其重要性。详细介绍轮询、加权轮询、最少连接、加权最少连接、随机、源地址哈希等常用算法,分析各自优缺点及适用场景。并提供 Java 语言代码实现示例,助力直观理解。文章结构清晰,语言通俗易懂,对理解和应用负载均衡算法具有实用价值和参考价值。
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
|
3月前
|
存储 关系型数据库 数据库
高性能云盘:一文解析RDS数据库存储架构升级
性能、成本、弹性,是客户实际使用数据库过程中关注的三个重要方面。RDS业界率先推出的高性能云盘(原通用云盘),是PaaS层和IaaS层的深度融合的技术最佳实践,通过使用不同的存储介质,为客户提供同时满足低成本、低延迟、高持久性的体验。
|
4月前
|
存储 Cloud Native 关系型数据库
PolarDB开源:云原生数据库的架构革命
本文围绕开源核心价值、社区运营实践和技术演进路线展开。首先解读存算分离架构的三大突破,包括基于RDMA的分布式存储、计算节点扩展及存储池扩容机制,并强调与MySQL的高兼容性。其次分享阿里巴巴开源治理模式,涵盖技术决策、版本发布和贡献者成长体系,同时展示企业应用案例。最后展望技术路线图,如3.0版本的多写多读架构、智能调优引擎等特性,以及开发者生态建设举措,推荐使用PolarDB-Operator实现高效部署。
266 3
|
5月前
|
负载均衡 算法 关系型数据库
大数据新视界--大数据大厂之MySQL数据库课程设计:MySQL集群架构负载均衡故障排除与解决方案
本文深入探讨 MySQL 集群架构负载均衡的常见故障及排除方法。涵盖请求分配不均、节点无法响应、负载均衡器故障等现象,介绍多种负载均衡算法及故障排除步骤,包括检查负载均衡器状态、调整算法、诊断修复节点故障等。还阐述了预防措施与确保系统稳定性的方法,如定期监控维护、备份恢复策略、团队协作与知识管理等。为确保 MySQL 数据库系统高可用性提供全面指导。
|
NoSQL 关系型数据库 MySQL
微服务架构下的数据库选择:MySQL、PostgreSQL 还是 NoSQL?
在微服务架构中,数据库的选择至关重要。不同类型的数据库适用于不同的需求和场景。在本文章中,我们将深入探讨传统的关系型数据库(如 MySQL 和 PostgreSQL)与现代 NoSQL 数据库的优劣势,并分析在微服务架构下的最佳实践。
|
消息中间件 缓存 监控
优化微服务架构中的数据库访问:策略与最佳实践
在微服务架构中,数据库访问的效率直接影响到系统的性能和可扩展性。本文探讨了优化微服务架构中数据库访问的策略与最佳实践,包括数据分片、缓存策略、异步处理和服务间通信优化。通过具体的技术方案和实例分析,提供了一系列实用的建议,以帮助开发团队提升微服务系统的响应速度和稳定性。
|
7月前
|
人工智能 JavaScript 安全
【01】Java+若依+vue.js技术栈实现钱包积分管理系统项目-商业级电玩城积分系统商业项目实战-需求改为思维导图-设计数据库-确定基础架构和设计-优雅草卓伊凡商业项目实战
【01】Java+若依+vue.js技术栈实现钱包积分管理系统项目-商业级电玩城积分系统商业项目实战-需求改为思维导图-设计数据库-确定基础架构和设计-优雅草卓伊凡商业项目实战
299 13
【01】Java+若依+vue.js技术栈实现钱包积分管理系统项目-商业级电玩城积分系统商业项目实战-需求改为思维导图-设计数据库-确定基础架构和设计-优雅草卓伊凡商业项目实战
|
7月前
|
SQL 弹性计算 安全
【上云基础系列04】基于标准架构的数据库升级
本文回顾了业务上云从基础到进阶的理念,涵盖基础版和全栈版架构。在“入门级:上云标准弹性架构基础版”的基础上,本文针对数据库升级,重点介绍了高可用数据库架构的升级方案,确保数据安全和业务连续性。最后,附有详细的“上云标准弹性架构”演进说明,帮助用户选择合适的架构方案。
|
6月前
|
存储 SQL 并行计算
【赵渝强老师】达梦数据库MPP集群的架构
达梦数据库提供大规模并行处理(MPP)架构,以低成本实现高性能并行计算,满足海量数据存储和复杂查询需求。DM MPP采用完全对等无共享体系,消除主节点瓶颈,通过多节点并行执行提升性能。其执行流程包括主EP生成计划、分发任务、各EP并行处理及结果汇总返回。为确保高可用性,建议结合数据守护部署。
160 0
|
10月前
|
存储 SQL Apache
Apache Doris 开源最顶级基于MPP架构的高性能实时分析数据库
Apache Doris 是一个基于 MPP 架构的高性能实时分析数据库,以其极高的速度和易用性著称。它支持高并发点查询和复杂分析场景,适用于报表分析、即席查询、数据仓库和数据湖查询加速等。最新发布的 2.0.2 版本在性能、稳定性和多租户支持方面有显著提升。社区活跃,已广泛应用于电商、广告、用户行为分析等领域。
Apache Doris 开源最顶级基于MPP架构的高性能实时分析数据库