“搜索”的原理,架构,实现,实践,面试不用再怕了(值得收藏)!!!

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 可能99%的同学不做搜索引擎,但99%的同学一定实现过检索功能。搜索,检索,这里面到底包含哪些技术的东西,希望本文能够给大家一些启示。

全网搜索引擎架构与流程如何?
image.png

全网搜索引擎的宏观架构如上图,核心子系统主要分为三部分(粉色部分):

(1)spider爬虫系统

(2)search&index建立索引与查询索引系统,这个系统又主要分为两部分:

  • 一部分用于生成索引数据build_index

  • 一部分用于查询索引数据search_index

(3)rank打分排序系统

核心数据主要分为两部分(紫色部分):

(1)web网页库

(2)index索引数据

全网搜索引擎的业务特点决定了,这是一个“写入”和“检索”分离的系统

写入是如何实施的?
image.png

系统组成:由spider与search&index两个系统完成。

输入:站长们生成的互联网网页。

输出:正排倒排索引数据。

流程:如架构图中的1,2,3,4:

(1)spider把互联网网页抓过来;

(2)spider把互联网网页存储到网页库中(这个对存储的要求很高,要存储几乎整个“万维网”的镜像);

(3)build_index从网页库中读取数据,完成分词;

(4)build_index生成倒排索引;

检索是如何实施的?
image.png

系统组成:由search&index与rank两个系统完成。

输入:用户的搜索词。

输出:排好序的第一页检索结果。

流程:如架构图中的a,b,c,d:

(a)search_index获得用户的搜索词,完成分词;

(b)search_index查询倒排索引,获得“字符匹配”网页,这是初筛的结果;

(c)rank对初筛的结果进行打分排序;

(d)rank对排序后的第一页结果返回;

站内搜索引擎架构与流程如何?

做全网搜索的公司毕竟是少数,绝大部分公司要实现的其实只是一个站内搜索以58同城100亿帖子的搜索为例,其整体架构如下:
image.png

站内搜索引擎的宏观架构如上图,与全网搜索引擎的宏观架构相比,差异只有写入的地方:

(1)全网搜索需要spider要被动去抓取数据;

(2)站内搜索是内部系统生成的数据,例如“发布系统”会将生成的帖子主动推给build_data系统;

画外音:看似“很小”的差异,架构实现上难度却差很多,全网搜索如何“实时”发现“全量”的网页是非常困难的,而站内搜索容易实时得到全部数据。

对于spider、search&index、rank三个系统:

(1)spider和search&index是相对工程的系统;

(2)rank是和业务、策略紧密、算法相关的系统,搜索体验的差异主要在此,而业务、策略的优化是需要时间积累的,这里的启示是:

  • Google的体验比Baidu好,根本在于前者rank牛逼

  • 国内互联网公司(例如360)短时间要搞一个体验超越Baidu的搜索引擎,是很难的,真心需要时间的积累

前面的内容太宏观,为了照顾大部分没有做过搜索引擎的同学,数据结构与算法部分从正排索引、倒排索引一点点开始。


什么是正排索引(forward index)?

简言之,由key查询实体的过程,使用正排索引


例如,用户表:

t_user(uid, name, passwd, age, sex)

由uid查询整行的过程,就时正排索引查询。


又例如,网页库:

t_web_page(url, page_content)

由url查询整个网页的过程,也是正排索引查询。

网页内容分词后,page_content会对应一个分词后的集合list。

简易的,正排索引可以理解为:

Map<url, list>

能够由网页url快速找到内容的一个数据结构。

画外音:时间复杂度可以认为是O(1)。

什么是倒排索引(inverted index)?

与正排索引相反,由item查询key的过程,使用倒排索引


对于网页搜索,倒排索引可以理解为:

Map<item, list>

能够由查询词快速找到包含这个查询词的网页的数据结构。

画外音:时间复杂度也是O(1)。

举个例子,假设有3个网页:

url1 -> “我爱北京”

url2 -> “我爱到家”

url3 -> “到家美好”

这是一个正排索引:

Map。

分词之后:

url1 -> {我,爱,北京}

url2 -> {我,爱,到家}

url3 -> {到家,美好}

这是一个分词后的正排索引:

Map>。

分词后倒排索引:

我 -> {url1, url2}

爱 -> {url1, url2}

北京 -> {url1}

到家 -> {url2, url3}

美好 -> {url3}

由检索词item快速找到包含这个查询词的网页Map>就是倒排索引

画外音:明白了吧,词到url的过程,是倒排索引。

正排索引和倒排索引是spider和build_index系统提前建立好的数据结构,为什么要使用这两种数据结构,是因为它能够快速的实现“用户网页检索”需求。

画外音,业务需求决定架构实现,查询起来都很快。


检索的过程是什么样的?

假设搜索词是“我爱”:

(1)分词,“我爱”会分词为{我,爱},时间复杂度为O(1);

(2)每个分词后的item,从倒排索引查询包含这个item的网页list,时间复杂度也是O(1):

我 -> {url1, url2}

爱 -> {url1, url2}

(3)求list的交集,就是符合所有查询词的结果网页,对于这个例子,{url1, url2}就是最终的查询结果;

画外音:检索的过程也很简单:分词,查倒排索引,求结果集交集。

就结束了吗?其实不然,分词和倒排查询时间复杂度都是O(1),整个搜索的时间复杂度取决于“求list的交集”,问题转化为了求两个集合交集

字符型的url不利于存储与计算,一般来说每个url会有一个数值型的url_id来标识,后文为了方便描述,list统一用list替代。

list1和list2,求交集怎么求?


方案一:for for,土办法,时间复杂度O(nn)

每个搜索词命中的网页是很多的,O(n*n)的复杂度是明显不能接受的。倒排索引是在创建之初可以进行排序预处理,问题转化成两个有序的list求交集,就方便多了。

画外音:比较笨的方法。

方案二:有序list求交集,拉链法
image.png

有序集合1{1,3,5,7,8,9}

有序集合2{2,3,4,5,6,7}

两个指针指向首元素,比较元素的大小:

(1)如果相同,放入结果集,随意移动一个指针;

(2)否则,移动值较小的一个指针,直到队尾;


这种方法的好处是:

(1)集合中的元素最多被比较一次,时间复杂度为O(n)

(2)多个有序集合可以同时进行,这适用于多个分词的item求url_id交集;

这个方法就像一条拉链的两边齿轮,一一比对就像拉链,故称为拉链法;

画外音:倒排索引是提前初始化的,可以利用“有序”这个特性。

方案三:分桶并行优化

数据量大时,url_id分桶水平切分+并行运算是一种常见的优化方法,如果能将list1和list2分成若干个桶区间,每个区间利用多线程并行求交集,各个线程结果集的并集,作为最终的结果集,能够大大的减少执行时间。

举例:

有序集合1{1,3,5,7,8,9, 10,30,50,70,80,90}

有序集合2{2,3,4,5,6,7, 20,30,40,50,60,70}

求交集,先进行分桶拆分:

桶1的范围为[1, 9]

桶2的范围为[10, 100]

桶3的范围为[101, max_int]

于是:

集合1就拆分成

集合a{1,3,5,7,8,9}

集合b{10,30,50,70,80,90}

集合c{}


集合2就拆分成

集合d{2,3,4,5,6,7}

集合e{20,30,40,50,60,70}

集合e{}

每个桶内的数据量大大降低了,并且每个桶内没有重复元素,可以利用多线程并行计算:

桶1内的集合a和集合d的交集是x{3,5,7}

桶2内的集合b和集合e的交集是y{30, 50, 70}

桶3内的集合c和集合d的交集是z{}

最终,集合1和集合2的交集,是x与y与z的并集,即集合{3,5,7,30,50,70}。

画外音:多线程、水平切分都是常见的优化手段。

方案四:bitmap再次优化

数据进行了水平分桶拆分之后,每个桶内的数据一定处于一个范围之内,如果集合符合这个特点,就可以使用bitmap来表示集合:
image.png

如上图,假设set1{1,3,5,7,8,9}和set2{2,3,4,5,6,7}的所有元素都在桶值[1, 16]的范围之内,可以用16个bit来描述这两个集合,原集合中的元素x,在这个16bitmap中的第x个bit为1,此时两个bitmap求交集,只需要将两个bitmap进行“与”操作,结果集bitmap的3,5,7位是1,表明原集合的交集为{3,5,7}。

水平分桶,bitmap优化之后,能极大提高求交集的效率,但时间复杂度仍旧是O(n)。bitmap需要大量连续空间,占用内存较大。

画外音:bitmap能够表示集合,用它求集合交集速度非常快。

方案五:跳表skiplist

有序链表集合求交集,跳表是最常用的数据结构,它可以将有序集合求交集的复杂度由O(n)降至接近O(log(n))
image.png

集合1{1,2,3,4,20,21,22,23,50,60,70}

集合2{50,70}

要求交集,如果用拉链法,会发现1,2,3,4,20,21,22,23都要被无效遍历一次,每个元素都要被比对,时间复杂度为O(n),能不能每次比对“跳过一些元素”呢?

跳表就出现了:
image.png

集合1{1,2,3,4,20,21,22,23,50,60,70}建立跳表时,一级只有{1,20,50}三个元素,二级与普通链表相同。

集合2{50,70}由于元素较少,只建立了一级普通链表。

如此这般,在实施“拉链”求交集的过程中,set1的指针能够由1跳到20再跳到50,中间能够跳过很多元素,无需进行一一比对,跳表求交集的时间复杂度近似O(log(n)),这是搜索引擎中常见的算法。

简单小结一下:

(1)全网搜索引擎系统由spider, search&index, rank三个子系统构成;

(2)站内搜索引擎与全网搜索引擎的差异在于,少了一个spider子系统;

(3)spider和search&index系统是两个工程系统,rank系统的优化却需要长时间的调优和积累;

(4)正排索引(forward index)是由网页url_id快速找到分词后网页内容list的过程;

(5)倒排索引(inverted index)是由分词item快速寻找包含这个分词的网页list的过程;

(6)用户检索的过程,是先分词,再找到每个item对应的list,最后进行集合求交集的过程;

(7)有序集合求交集的方法有:

  • 二重for循环法,时间复杂度O(n*n)

  • 拉链法,时间复杂度O(n)

  • 水平分桶,多线程并行

  • bitmap,大大提高运算并行度,时间复杂度O(n)

  • 跳表,时间复杂度为O(log(n))

画外音:面试应该够用了。

大部分工程师未必接触过“搜索内核”,但互联网业务,基本会涉及“检索”功能。还是以58同城的帖子业务场景为例,帖子的标题,帖子的内容有很强的用户检索需求,在业务、流量、并发量逐步递增的各个阶段,应该如何实现检索需求呢?

原始阶段-LIKE

创业阶段,常常用这种方法来快速实现。


数据在数据库中可能是这么存储的:

t_tiezi(tid, title, content)

满足标题、内容的检索需求可以通过LIKE实现:

select tid from t_tiezi where content like ‘%天通苑%’


这种方式确实能够快速满足业务需求,存在的问题也显而易见:

(1)效率低,每次需要全表扫描,计算量大,并发高时cpu容易100%;

(2)不支持分词;

初级阶段-全文索引

如何快速提高效率,支持分词,并对原有系统架构影响尽可能小呢,第一时间想到的是建立全文索引:

alter table t_tiezi add fulltext(title,content)

使用match和against实现索引字段上的查询需求。


全文索引能够快速实现业务上分词的需求,并且快速提升性能(分词后倒排,至少不要全表扫描了),但也存在一些问题:

(1)只适用于MyISAM;

(2)由于全文索引利用的是数据库特性,搜索需求和普通CURD需求耦合在数据库中:检索需求并发大时,可能影响CURD的请求;CURD并发大时,检索会非常的慢;

(3)数据量达到百万级别,性能还是会显著降低,查询返回时间很长,业务难以接受;

(4)比较难水平扩展;

中级阶段-开源外置索引

为了解决全文索的局限性,当数据量增加到大几百万,千万级别时,就要考虑外置索引了。外置索引的核心思路是:索引数据与原始数据分离,前者满足搜索需求,后者满足CURD需求,通过一定的机制(双写,通知,定期重建)来保证数据的一致性。


原始数据可以继续使用Mysql来存储,外置索引如何实施?Solr,Lucene,ES都是常见的开源方案。其中,ES(ElasticSearch)是目前最为流行的。


Lucene虽好,潜在的不足是:

(1)Lucene只是一个库,需要自己做服务,自己实现高可用/可扩展/负载均衡等复杂特性;

(2)Lucene只支持Java,如果要支持其他语言,必须得自己做服务;

(3)Lucene不友好,这是很致命的,非常复杂,使用者往往需要深入了解搜索的知识来理解它的工作原理,为了屏蔽其复杂性,还是得自己做服务;


为了改善Lucene的各项不足,解决方案都是“封装一个接口友好的服务,屏蔽底层复杂性”,于是有了ES:

(1)ES是一个以Lucene为内核来实现搜索功能,提供REStful接口的服务;

(2)ES能够支持很大数据量的信息存储,支持很高并发的搜索请求;

(3)ES支持集群,向使用者屏蔽高可用/可扩展/负载均衡等复杂特性;

目前,快狗打车使用ES作为核心的搜索服务,实现业务上的各类搜索需求,其中:

(1)数据量最大的“接口耗时数据收集”需求,数据量大概在10亿左右;

(2)并发量最大的“经纬度,地理位置搜索”需求,线上平均并发量大概在2000左右,压测数据并发量在8000左右;

所以,ES完全能满足10亿数据量,5k吞吐量的常见搜索业务需求。

高级阶段-自研搜索引擎

当数据量进一步增加,达到10亿、100亿数据量;并发量也进一步增加,达到每秒10万吞吐量;业务个性也逐步增加的时候,就需要自研搜索引擎了,定制化实现搜索内核了。


到了定制化自研搜索引擎的阶段,超大数据量、超高并发量为设计重点,为了达到“无限容量、无限并发”的需求,架构设计需要重点考虑“扩展性”,力争做到:增加机器就能扩容(数据量+并发量)

58同城的自研搜索引擎E-search初步架构图如下:
image.png

(1)上层proxy(粉色)是接入集群,为对外门户,接受搜索请求,其无状态性能够保证增加机器就能扩充proxy集群性能

(2)中层merger(浅蓝色)是逻辑集群,主要用于实现搜索合并,以及打分排序,业务相关的rank就在这一层实现,其无状态性也能够保证增加机器就能扩充merger集群性能

(3)底层searcher(暗红色大框)是检索集群,服务和索引数据部署在同一台机器上,服务启动时可以加载索引数据到内存,请求访问时从内存中load数据,访问速度很快:

  • 为了满足数据容量的扩展性,索引数据进行了水平切分,增加切分份数,就能够无限扩展性能,如上图searcher分为了4组

  • 为了满足一份数据的性能扩展性,同一份数据进行了冗余,理论上做到增加机器就无限扩展性能,如上图每组searcher又冗余了2份


如此设计,真正做到做到增加机器就能承载更多的数据量,响应更高的并发量。


简单小结一下:

为了满足搜索业务的需求,随着数据量和并发量的增长,搜索架构一般会经历这么几个阶段:

(1)原始阶段-LIKE;

(2)初级阶段-全文索引;

(3)中级阶段-开源外置索引;

(4)高级阶段-自研搜索引擎;


最后一个高级话题,关于搜索的实时性

百度为何能实时检索出15分钟之前新出的新闻?58同城为何能实时检索出1秒钟之前发布的帖子?

实时搜索引擎系统架构的要点是什么?

大数据量、高并发量情况下的搜索引擎为了保证实时性,架构设计上的两个要点:

(1)索引分级;

(2)dump&merge;

首先,在数据量非常大的情况下,为了保证倒排索引的高效检索效率,任何对数据的更新,并不会实时修改索引

画外音:因为,一旦产生碎片,会大大降低检索效率。

既然索引数据不能实时修改,如何保证最新的网页能够被索引到呢?

索引分级,分为全量库、日增量库、小时增量库。
image.png

如上图所述:

(1)300亿数据在全量索引库中;

(2)1000万1天内修改过的数据在天库中;

(3)50万1小时内修改过的数据在小时库中;

有修改请求发生时只会操作最低级别的索引,例如小时库。
image.png

有查询请求发生时会同时查询各个级别的索引,将结果合并,得到最新的数据:

(1)全量库是紧密存储的索引,无碎片,速度快;

(2)天库是紧密存储,速度快;

(3)小时库数据量小,速度也快;

分级索引能够保证实时性,那么,新的问题来了,小时库数据何时反映到天库中,天库中的数据何时反映到全量库中呢?

dump&merge,索引的导出与合并,由这两个异步的工具完成:
image.png

dumper:将在线的数据导出。
merger:将离线的数据合并到高一级别的索引中去。

小时库,一小时一次,合并到天库中去;

天库,一天一次,合并到全量库中去;

这样就保证了小时库和天库的数据量都不会特别大;

如果数据量和并发量更大,还能增加星期库,月库来缓冲。

简单小结一下:

超大数据量,超高并发量,实时搜索引擎的两个架构要点:

(1)索引分级;

(2)dump&merge;

关于“搜索”与“检索”,GET到新技能了吗?

本文转自“架构师之路”公众号,58沈剑提供。

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps&nbsp;
目录
相关文章
|
6天前
|
消息中间件 存储 缓存
大厂面试高频:Kafka 工作原理 ( 详细图解 )
本文详细解析了 Kafka 的核心架构和实现原理,消息中间件是亿级互联网架构的基石,大厂面试高频,非常重要,建议收藏。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
大厂面试高频:Kafka 工作原理 ( 详细图解 )
|
7天前
|
存储 算法 Java
大厂面试高频:什么是自旋锁?Java 实现自旋锁的原理?
本文详解自旋锁的概念、优缺点、使用场景及Java实现。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
大厂面试高频:什么是自旋锁?Java 实现自旋锁的原理?
|
8天前
|
存储 安全 Java
面试高频:Synchronized 原理,建议收藏备用 !
本文详解Synchronized原理,包括其作用、使用方式、底层实现及锁升级机制。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
面试高频:Synchronized 原理,建议收藏备用 !
|
3天前
|
Cloud Native 安全 API
云原生架构下的微服务治理策略与实践####
—透过云原生的棱镜,探索微服务架构下的挑战与应对之道 本文旨在探讨云原生环境下,微服务架构所面临的关键挑战及有效的治理策略。随着云计算技术的深入发展,越来越多的企业选择采用云原生架构来构建和部署其应用程序,以期获得更高的灵活性、可扩展性和效率。然而,微服务架构的复杂性也带来了服务发现、负载均衡、故障恢复等一系列治理难题。本文将深入分析这些问题,并提出一套基于云原生技术栈的微服务治理框架,包括服务网格的应用、API网关的集成、以及动态配置管理等关键方面,旨在为企业实现高效、稳定的微服务架构提供参考路径。 ####
20 5
|
6天前
|
监控 Go API
Go语言在微服务架构中的应用实践
在微服务架构的浪潮中,Go语言以其简洁、高效和并发处理能力脱颖而出,成为构建微服务的理想选择。本文将探讨Go语言在微服务架构中的应用实践,包括Go语言的特性如何适应微服务架构的需求,以及在实际开发中如何利用Go语言的特性来提高服务的性能和可维护性。我们将通过一个具体的案例分析,展示Go语言在微服务开发中的优势,并讨论在实际应用中可能遇到的挑战和解决方案。
|
4天前
|
负载均衡 监控 Cloud Native
云原生架构下的微服务治理策略与实践####
在数字化转型浪潮中,企业纷纷拥抱云计算,而云原生架构作为其核心技术支撑,正引领着一场深刻的技术变革。本文聚焦于云原生环境下微服务架构的治理策略与实践,探讨如何通过精细化的服务管理、动态的流量调度、高效的故障恢复机制以及持续的监控优化,构建弹性、可靠且易于维护的分布式系统。我们将深入剖析微服务治理的核心要素,结合具体案例,揭示其在提升系统稳定性、扩展性和敏捷性方面的关键作用,为读者提供一套切实可行的云原生微服务治理指南。 ####
|
4天前
|
消息中间件 缓存 Cloud Native
云原生架构下的性能优化实践与挑战####
随着企业数字化转型的加速,云原生架构以其高度解耦、弹性伸缩和快速迭代的特性,成为现代软件开发的首选模式。本文深入探讨了云原生环境下性能优化的关键策略与面临的主要挑战,通过案例分析,揭示了如何有效利用容器化、微服务、动态调度等技术手段提升应用性能,同时指出了在复杂云环境中确保系统稳定性和高效性的难题,为开发者和架构师提供了实战指南。 ####
17 3
|
4天前
|
运维 Kubernetes Cloud Native
深入理解云原生架构:从理论到实践
【10月更文挑战第38天】本文将引导读者深入探索云原生技术的核心概念,以及如何将这些概念应用于实际的软件开发和运维中。我们将从云原生的基本定义出发,逐步展开其背后的设计哲学、关键技术组件,并以一个具体的代码示例来演示云原生应用的构建过程。无论你是云原生技术的初学者,还是希望深化理解的开发者,这篇文章都将为你提供有价值的见解和实操指南。
|
4天前
|
Kubernetes Cloud Native 持续交付
云原生技术在现代应用架构中的实践与思考
【10月更文挑战第38天】随着云计算的不断成熟和演进,云原生(Cloud-Native)已成为推动企业数字化转型的重要力量。本文从云原生的基本概念出发,深入探讨了其在现代应用架构中的实际应用,并结合代码示例,展示了云原生技术如何优化资源管理、提升系统弹性和加速开发流程。通过分析云原生的优势与面临的挑战,本文旨在为读者提供一份云原生转型的指南和启示。
17 3
|
4天前
|
运维 Kubernetes Cloud Native
云原生技术在现代应用架构中的实践与挑战####
本文深入探讨了云原生技术的核心概念、关键技术组件及其在实际项目中的应用案例,分析了企业在向云原生转型过程中面临的主要挑战及应对策略。不同于传统摘要的概述性质,本摘要强调通过具体实例揭示云原生技术如何促进应用的灵活性、可扩展性和高效运维,同时指出实践中需注意的技术债务、安全合规等问题,为读者提供一幅云原生技术实践的全景视图。 ####