未编译 Python 代码比 Go 慢 100 倍

简介: 我是编译型编程语言的忠实粉丝,一直都是。虽然解释型编程语言可以让开发者更快地编写和测试代码,但我仍然认为编译器是值得长期投入的。

原文链接
在我看来,编译型代码有两个明显的优势:

每次修改代码都可以得到验证,甚至是在开始运行代码之前。

更快的执行速度。根据具体情况,代码可能被编译成非常底层的运行指令。

我之所以要写这篇文章,是想比较一下编译型代码的执行速度会比解释型快多少。

因为我偏爱编译型编程语言,所以现在有个问题:我手头有很多感兴趣的代码,但它们都是用 Python 写的,我该怎么办?全部重写?部分重写?完全不重写?

先入之见
在这篇文章里,我通过比较 Java 、 Go 和 Python 在处理不同任务时的性能表现来验证我对它们的一些先入之见。首先是 Python,我正在考虑要不要把它替换掉。至于 Java,我已经是 20 多年的粉丝了,一路看着它成熟,不管是性能还是功能都在变得更好。最后是 Go,我两年前才开始用它,但真的很喜欢它。虽然 Go 相比 Java 还缺失了一些特性,比如类继承,但它的语法简洁而紧凑,编译和执行速度都很快,生成的代码也很紧凑,还提供了优雅的 goroutine 来实现并发处理。

以下是我的一些先入之见。

编译型代码的执行速度比解释型代码要快一个数量级。之前,我比较了使用 JIT 和不使用 JIT 编译 Java 代码所获得的性能,它们的比率大概是 30 比 1。

Go 的运行速度比 Java 要快一点。我记得在之前的工作中做过一些测试,发现 Go 在处理某些任务时要比 Java 快 30%,但最近一些文章又说 Java 比 Go 快。

先来测试一把我在之前的一篇文章中通过一些代码比较过 JIT 的性能,后来使用 Python 和 Go 也实现了一遍。这段代码计算 100 的 Fibonacci 数值,每一轮计算 50 次,并打印执行时间(纳秒),共计算 200 轮。代码可以在 GitHub 上找到。

三种语言的输出结果看起来像这样:

复制代码

Java   Go    Python
...
122    123   11683
119    107   11539
123    104   11358
120    115   11926
119    118   11973
120    104   11377
109    103   12960
127    122   15683
112    106   11482
...

平均值是这样:

复制代码

Java   Go    Python
130    105   10050

可以看到,在计算 Fibonacci 数值时,Java 比 Go 要慢一些,大概慢 24%,而 Python 几乎慢了 100 倍,也就是 9458%。

这个结果验证了我最初对 Java 和 Go 的判断,但让我感到吃惊的是 Python 的表现,它慢得不只是一个数量级,是两个!

我在想 Python 为什么会花这么多时间。

我首先想到的是,很多人关注的是 Python 的易用性,并通过牺牲性能来快速获得处理结果。我相信数据科学家们都是这么想的。况且有这么多现成的库可以用,为什么要去找其他的?迟早会有人优化它们的。

第二个原因是很多人没有比较过不同的实现,因为很多初创公司在激烈的竞争中忙于做出产品,根本无暇顾及什么优化不优化。

第三个原因,有一些方式可以让同样的 Python 代码跑得更快。

把 Python 代码编译一下会如何
在做了一些调研之后,我决定使用 PyPy 测试一下相同的 Python 代码。PyPy 是 Python 的另一个实现,它本身就是使用 Python 开发的,包含了一个像 Java 那样的 JIT 编译器。跟 Java 一样,我们需要忽略初始的输出,并跳过 JIT 编译过程,得到的结果如下:

复制代码

Java   Go    Python    PyPy
130    105   10050     1887

PyPy 的平均响应速度比 Python 快 5 倍,但仍然比 Go 慢 20 倍。

更多的测试
以上的测试主要集中在数值的计算上,如果回到最开始所说的 Python 代码,我还需要关注:

Kafka、HTTP 监听器和数据库的 IO;

解析 JSON 消息。

总结
本文通过执行简单的数学运算得出这样的结论:Go 的执行速度比 Java 快一些,比解释运行的 Python 快 2 个数量级。

基于这样的结果,我个人是不会使用 Go 来替换 Java 的。

另一方面,在高负载的关键任务上使用 Python 不是一个好的选择。如果你正面临这种情况,可以考虑使用 Python 编译器作为短期的应急方案。

在决定是否要重写 Python 代码时,还需要考虑到其他因素,比如 IO 和 CPU 方面的问题,但这些超出本文的范围了。

有人提醒我,使用 Go 和 Java 的 64 位整型只能准确计算出 92 的 Fibonacci 数值,再往后会出现溢出(译者:所以代码后来改成了计算 90 的 Fibonacci 数值)。但即使是这样,本文的结论仍然是有效的。

相关文章
|
15天前
|
缓存 监控 测试技术
Python中的装饰器:功能扩展与代码复用的利器###
本文深入探讨了Python中装饰器的概念、实现机制及其在实际开发中的应用价值。通过生动的实例和详尽的解释,文章展示了装饰器如何增强函数功能、提升代码可读性和维护性,并鼓励读者在项目中灵活运用这一强大的语言特性。 ###
|
18天前
|
缓存 开发者 Python
探索Python中的装饰器:简化代码,增强功能
【10月更文挑战第35天】装饰器在Python中是一种强大的工具,它允许开发者在不修改原有函数代码的情况下增加额外的功能。本文旨在通过简明的语言和实际的编码示例,带领读者理解装饰器的概念、用法及其在实际编程场景中的应用,从而提升代码的可读性和复用性。
|
14天前
|
Python
探索Python中的装饰器:简化代码,提升效率
【10月更文挑战第39天】在编程的世界中,我们总是在寻找使代码更简洁、更高效的方法。Python的装饰器提供了一种强大的工具,能够让我们做到这一点。本文将深入探讨装饰器的基本概念,展示如何通过它们来增强函数的功能,同时保持代码的整洁性。我们将从基础开始,逐步深入到装饰器的高级用法,让你了解如何利用这一特性来优化你的Python代码。准备好让你的代码变得更加优雅和强大了吗?让我们开始吧!
22 1
|
19天前
|
设计模式 缓存 监控
Python中的装饰器:代码的魔法增强剂
在Python编程中,装饰器是一种强大而灵活的工具,它允许程序员在不修改函数或方法源代码的情况下增加额外的功能。本文将探讨装饰器的定义、工作原理以及如何通过自定义和标准库中的装饰器来优化代码结构和提高开发效率。通过实例演示,我们将深入了解装饰器的应用,包括日志记录、性能测量、事务处理等常见场景。此外,我们还将讨论装饰器的高级用法,如带参数的装饰器和类装饰器,为读者提供全面的装饰器使用指南。
|
15天前
|
存储 缓存 监控
掌握Python装饰器:提升代码复用性与可读性的利器
在本文中,我们将深入探讨Python装饰器的概念、工作原理以及如何有效地应用它们来增强代码的可读性和复用性。不同于传统的函数调用,装饰器提供了一种优雅的方式来修改或扩展函数的行为,而无需直接修改原始函数代码。通过实际示例和应用场景分析,本文旨在帮助读者理解装饰器的实用性,并鼓励在日常编程实践中灵活运用这一强大特性。
|
19天前
|
存储 算法 搜索推荐
Python高手必备!揭秘图(Graph)的N种风骚表示法,让你的代码瞬间高大上
在Python中,图作为重要的数据结构,广泛应用于社交网络分析、路径查找等领域。本文介绍四种图的表示方法:邻接矩阵、邻接表、边列表和邻接集。每种方法都有其特点和适用场景,掌握它们能提升代码效率和可读性,让你在项目中脱颖而出。
28 5
|
17天前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到Python代码实践
【10月更文挑战第36天】本文将深入浅出地介绍机器学习的基本概念、主要算法及其在Python中的实现。我们将通过实际案例,展示如何使用scikit-learn库进行数据预处理、模型选择和参数调优。无论你是初学者还是有一定基础的开发者,都能从中获得启发和实践指导。
36 2
|
19天前
|
数据库 Python
异步编程不再难!Python asyncio库实战,让你的代码流畅如丝!
在编程中,随着应用复杂度的提升,对并发和异步处理的需求日益增长。Python的asyncio库通过async和await关键字,简化了异步编程,使其变得流畅高效。本文将通过实战示例,介绍异步编程的基本概念、如何使用asyncio编写异步代码以及处理多个异步任务的方法,帮助你掌握异步编程技巧,提高代码性能。
53 4
|
20天前
|
缓存 开发者 Python
探索Python中的装饰器:简化和增强你的代码
【10月更文挑战第32天】 在编程的世界中,简洁和效率是永恒的追求。Python提供了一种强大工具——装饰器,它允许我们以声明式的方式修改函数的行为。本文将深入探讨装饰器的概念、用法及其在实际应用中的优势。通过实际代码示例,我们不仅理解装饰器的工作方式,还能学会如何自定义装饰器来满足特定需求。无论你是初学者还是有经验的开发者,这篇文章都将为你揭示装饰器的神秘面纱,并展示如何利用它们简化和增强你的代码库。
|
19天前
|
API 数据处理 Python
探秘Python并发新世界:asyncio库,让你的代码并发更优雅!
在Python编程中,随着网络应用和数据处理需求的增长,并发编程变得愈发重要。asyncio库作为Python 3.4及以上版本的标准库,以其简洁的API和强大的异步编程能力,成为提升性能和优化资源利用的关键工具。本文介绍了asyncio的基本概念、异步函数的定义与使用、并发控制和资源管理等核心功能,通过具体示例展示了如何高效地编写并发代码。
28 2