深度残差收缩网络(6):代码实现

简介:

深度残差收缩网络其实是一种通用的特征学习方法,是深度残差网络ResNet、注意力机制和软阈值化的集成,可以用于图像分类。本文采用TensorFlow 1.0和TFLearn 0.3.2,编写了图像分类的程序,采用的图像数据为CIFAR-10。CIFAR-10是一个非常常用的图像数据集,包含10个类别的图像。可以在这个网址找到具体介绍:https://www.cs.toronto.edu/~kriz/cifar.html

2

参照ResNet代码(https://github.com/tflearn/tflearn/blob/master/examples/images/residual_network_cifar10.py),所编写的深度残差收缩网络的代码如下:

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Dec 23 21:23:09 2019
 
M. Zhao, S. Zhong, X. Fu, B. Tang, M. Pecht, Deep Residual Shrinkage Networks for Fault Diagnosis,
IEEE Transactions on Industrial Informatics, 2019, DOI: 10.1109/TII.2019.2943898
 
@author: super_9527
"""
  
from __future__ import division, print_function, absolute_import
  
import tflearn
import numpy as np
import tensorflow as tf
from tflearn.layers.conv import conv_2d
  
# Data loading
from tflearn.datasets import cifar10
(X, Y), (testX, testY) = cifar10.load_data()
  
# Add noise
X = X + np.random.random((50000, 32, 32, 3))*0.1
testX = testX + np.random.random((10000, 32, 32, 3))*0.1
  
# Transform labels to one-hot format
Y = tflearn.data_utils.to_categorical(Y,10)
testY = tflearn.data_utils.to_categorical(testY,10)
  
def residual_shrinkage_block(incoming, nb_blocks, out_channels, downsample=False,
                   downsample_strides=2, activation='relu', batch_norm=True,
                   bias=True, weights_init='variance_scaling',
                   bias_init='zeros', regularizer='L2', weight_decay=0.0001,
                   trainable=True, restore=True, reuse=False, scope=None,
                   name="ResidualBlock"):
      
    # residual shrinkage blocks with channel-wise thresholds
  
    residual = incoming
    in_channels = incoming.get_shape().as_list()[-1]
  
    # Variable Scope fix for older TF
    try:
        vscope = tf.variable_scope(scope, default_name=name, values=[incoming],
                                   reuse=reuse)
    except Exception:
        vscope = tf.variable_op_scope([incoming], scope, name, reuse=reuse)
  
    with vscope as scope:
        name = scope.name #TODO
  
        for i in range(nb_blocks):
  
            identity = residual
  
            if not downsample:
                downsample_strides = 1
  
            if batch_norm:
                residual = tflearn.batch_normalization(residual)
            residual = tflearn.activation(residual, activation)
            residual = conv_2d(residual, out_channels, 3,
                             downsample_strides, 'same', 'linear',
                             bias, weights_init, bias_init,
                             regularizer, weight_decay, trainable,
                             restore)
  
            if batch_norm:
                residual = tflearn.batch_normalization(residual)
            residual = tflearn.activation(residual, activation)
            residual = conv_2d(residual, out_channels, 3, 1, 'same',
                             'linear', bias, weights_init,
                             bias_init, regularizer, weight_decay,
                             trainable, restore)
              
            # get thresholds and apply thresholding
            abs_mean = tf.reduce_mean(tf.reduce_mean(tf.abs(residual),axis=2,keep_dims=True),axis=1,keep_dims=True)
            scales = tflearn.fully_connected(abs_mean, out_channels//4, activation='linear',regularizer='L2',weight_decay=0.0001,weights_init='variance_scaling')
            scales = tflearn.batch_normalization(scales)
            scales = tflearn.activation(scales, 'relu')
            scales = tflearn.fully_connected(scales, out_channels, activation='linear',regularizer='L2',weight_decay=0.0001,weights_init='variance_scaling')
            scales = tf.expand_dims(tf.expand_dims(scales,axis=1),axis=1)
            thres = tf.multiply(abs_mean,tflearn.activations.sigmoid(scales))
            # soft thresholding
            residual = tf.multiply(tf.sign(residual), tf.maximum(tf.abs(residual)-thres,0))
              
  
            # Downsampling
            if downsample_strides > 1:
                identity = tflearn.avg_pool_2d(identity, 1,
                                               downsample_strides)
  
            # Projection to new dimension
            if in_channels != out_channels:
                if (out_channels - in_channels) % 2 == 0:
                    ch = (out_channels - in_channels)//2
                    identity = tf.pad(identity,
                                      [[0, 0], [0, 0], [0, 0], [ch, ch]])
                else:
                    ch = (out_channels - in_channels)//2
                    identity = tf.pad(identity,
                                      [[0, 0], [0, 0], [0, 0], [ch, ch+1]])
                in_channels = out_channels
  
            residual = residual + identity
  
    return residual
  
  
# Real-time data preprocessing
img_prep = tflearn.ImagePreprocessing()
img_prep.add_featurewise_zero_center(per_channel=True)
  
# Real-time data augmentation
img_aug = tflearn.ImageAugmentation()
img_aug.add_random_flip_leftright()
img_aug.add_random_crop([32, 32], padding=4)
  
# Building Deep Residual Shrinkage Network
net = tflearn.input_data(shape=[None, 32, 32, 3],
                         data_preprocessing=img_prep,
                         data_augmentation=img_aug)
net = tflearn.conv_2d(net, 16, 3, regularizer='L2', weight_decay=0.0001)
net = residual_shrinkage_block(net, 1, 16)
net = residual_shrinkage_block(net, 1, 32, downsample=True)
net = residual_shrinkage_block(net, 1, 32, downsample=True)
net = tflearn.batch_normalization(net)
net = tflearn.activation(net, 'relu')
net = tflearn.global_avg_pool(net)
# Regression
net = tflearn.fully_connected(net, 10, activation='softmax')
mom = tflearn.Momentum(0.1, lr_decay=0.1, decay_step=20000, staircase=True)
net = tflearn.regression(net, optimizer=mom, loss='categorical_crossentropy')
# Training
model = tflearn.DNN(net, checkpoint_path='model_cifar10',
                    max_checkpoints=10, tensorboard_verbose=0,
                    clip_gradients=0.)
  
model.fit(X, Y, n_epoch=100, snapshot_epoch=False, snapshot_step=500,
          show_metric=True, batch_size=100, shuffle=True, run_id='model_cifar10')
  
training_acc = model.evaluate(X, Y)[0]
validation_acc = model.evaluate(testX, testY)[0]

上面的代码构建了一个小型的深度残差收缩网络,只含有3个基本残差收缩模块,其他的超参数也未进行优化。如果为了追求更高的准确率的话,可以适当增加深度,增加训练迭代次数,以及适当调整超参数。

转载网址:
深度残差收缩网络:(一)背景知识 https://www.cnblogs.com/yc-9527/p/11598844.html
深度残差收缩网络:(二)整体思路 https://www.cnblogs.com/yc-9527/p/11601322.html
深度残差收缩网络:(三)网络结构 https://www.cnblogs.com/yc-9527/p/11603320.html
深度残差收缩网络:(四)注意力机制下的阈值设置 https://www.cnblogs.com/yc-9527/p/11604082.html
深度残差收缩网络:(五)实验验证 https://www.cnblogs.com/yc-9527/p/11610073.html
深度残差收缩网络:(六)代码实现 https://www.cnblogs.com/yc-9527/p/12091581.html
论文网址:
M. Zhao, S. Zhong, X. Fu, B. Tang, and M. Pecht, “Deep Residual Shrinkage Networks for Fault Diagnosis,” IEEE Transactions on Industrial Informatics, 2019, DOI: 10.1109/TII.2019.2943898
https://ieeexplore.ieee.org/document/8850096

相关文章
用MASM32按Time Protocol(RFC868)协议编写网络对时程序中的一些有用的函数代码
用MASM32按Time Protocol(RFC868)协议编写网络对时程序中的一些有用的函数代码
|
4月前
|
机器学习/深度学习 存储 算法
回声状态网络(Echo State Networks,ESN)详细原理讲解及Python代码实现
本文详细介绍了回声状态网络(Echo State Networks, ESN)的基本概念、优点、缺点、储层计算范式,并提供了ESN的Python代码实现,包括不考虑和考虑超参数的两种ESN实现方式,以及使用ESN进行时间序列预测的示例。
217 4
回声状态网络(Echo State Networks,ESN)详细原理讲解及Python代码实现
|
2月前
|
机器学习/深度学习 网络架构 计算机视觉
目标检测笔记(一):不同模型的网络架构介绍和代码
这篇文章介绍了ShuffleNetV2网络架构及其代码实现,包括模型结构、代码细节和不同版本的模型。ShuffleNetV2是一个高效的卷积神经网络,适用于深度学习中的目标检测任务。
92 1
目标检测笔记(一):不同模型的网络架构介绍和代码
|
3月前
|
安全 C#
某网络硬盘网站被植入传播Trojan.DL.Inject.xz等的代码
某网络硬盘网站被植入传播Trojan.DL.Inject.xz等的代码
|
2月前
|
机器学习/深度学习 API 算法框架/工具
残差网络(ResNet) -深度学习(Residual Networks (ResNet) – Deep Learning)
残差网络(ResNet) -深度学习(Residual Networks (ResNet) – Deep Learning)
62 0
|
4月前
|
安全 网络安全 开发者
探索Python中的装饰器:简化代码,增强功能网络安全与信息安全:从漏洞到防护
【8月更文挑战第30天】本文通过深入浅出的方式介绍了Python中装饰器的概念、用法和高级应用。我们将从基础的装饰器定义开始,逐步深入到如何利用装饰器来改进代码结构,最后探讨其在Web框架中的应用。适合有一定Python基础的开发者阅读,旨在帮助读者更好地理解并运用装饰器来优化他们的代码。
|
4月前
|
数据采集 量子技术 双11
【2023 年第十三届 MathorCup 高校数学建模挑战赛】C 题 电商物流网络包裹应急调运与结构优化问题 建模方案及代码实现
本文提供了2023年第十三届MathorCup高校数学建模挑战赛C题的详细建模方案及代码实现,针对电商物流网络中的包裹应急调运与结构优化问题,提出了包括时间序列分析在内的多种数学模型,并探讨了物流网络的鲁棒性。
70 2
【2023 年第十三届 MathorCup 高校数学建模挑战赛】C 题 电商物流网络包裹应急调运与结构优化问题 建模方案及代码实现
完成切换网络+修改网络连接图标提示的代码框架
完成切换网络+修改网络连接图标提示的代码框架
|
4月前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch代码实现神经网络
这段代码示例展示了如何在PyTorch中构建一个基础的卷积神经网络(CNN)。该网络包括两个卷积层,分别用于提取图像特征,每个卷积层后跟一个池化层以降低空间维度;之后是三个全连接层,用于分类输出。此结构适用于图像识别任务,并可根据具体应用调整参数与层数。
|
4月前
|
达摩院 供应链 JavaScript
网络流问题--仓储物流调度【数学规划的应用(含代码)】阿里达摩院MindOpt
本文通过使用MindOpt工具优化仓储物流调度问题,旨在提高物流效率并降低成本。首先,通过考虑供需匹配、运输时间与距离、车辆容量、仓库储存能力等因素构建案例场景。接着,利用数学规划方法,包括线性规划和网络流问题,来建立模型。在网络流问题中,通过定义节点(资源)和边(资源间的关系),确保流量守恒和容量限制条件下找到最优解。文中还详细介绍了MindOpt Studio云建模平台和MindOpt APL建模语言的应用,并通过实例展示了如何声明集合、参数、变量、目标函数及约束条件,并最终解析了求解结果。通过这些步骤,实现了在满足各仓库需求的同时最小化运输成本的目标。