Schedulerx2.0支持多语言版本的分片模型

简介: 1. 简介 任务调度系统可以对多种任务进行调度(定时、编排、重刷历史数据等),有些任务调度系统还提供了分布式任务,帮助用户解决大数据处理的难题。分布式任务主要分为静态分片和动态分片。 1.1 静态分片 主要场景是处理固定的分片数,比如分库分表固定1024张表,需要若干台机器分布式去处理。

1. 简介

任务调度系统可以对多种任务进行调度(定时、编排、重刷历史数据等),有些任务调度系统还提供了分布式任务,帮助用户解决大数据处理的难题。分布式任务主要分为静态分片和动态分片。

1.1 静态分片

主要场景是处理固定的分片数,比如分库分表固定1024张表,需要若干台机器分布式去处理。
主流的框架,开源有elastic-job。

1.2 动态分片

主要场景是分布式处理未知数据量的数据,比如一张大表不停在变更,想要分布式跑批。
主流的框架是schedulerx2.0提供的MapReduce模型,暂时还没有对外开源。

2. 多语言版本的分片模型

Schedulerx2.0当前支持多语言版本的分片模型,还具有高可用、流控、失败重试等特性,需要客户端版本1.1.0以上。

2.1 Java版本

  1. 控制台创建任务的时候,执行方式选择"分片运行",分片参数格式如下
    image
  2. 后端代码继承JavaProcessor即可,通过JobContext.getShardingId()可以拿到分片号,通过JobContext.getShardingParameter()可以拿到分片参数,比如
@Component
public class HelloWorldProcessor extends JavaProcessor {

    @Override
    public ProcessResult process(JobContext context) throws Exception {
        System.out.println("分片id=" + context.getShardingId() + ", 分片参数=" + context.getShardingParameter());
        return new ProcessResult(true);
    }

}
  1. 执行列表可以查看分片详情
    image

2.2 python版本

python用户想使用分布式跑批的福音来了,只需要安装一个agent,脚本都可以由schedulerx2.0维护:

  1. 下载schedulerx-agent包接入。
  2. 直接在控制台写python脚本和分片参数即可,脚本里sys.argv[1]是分片号,sys.argv[2]是分片参数
    image
  3. 执行列表可以查看分片详情
    image

2.3 其他脚本语言

shell和go脚本语言,和python类似,第一个系统参数是分片号,第二个是分片参数,就不一一demo了。

2.4 高可用

分片模型基于Map模型开发,可以继承Map模型高可用的特性,即某台worker执行过程中挂了,master worker会把分片failover到其他slave节点执行。

2.5 流控

分片模型基于Map模型开发,可以继承Map模型流控的特性,即可以控制单机子任务并发度。比如有1000个分片,一共10台机器,可以控制最多5个分片并发跑,其他在队列等待
image

2.6 分片自动失败重试

分片模型基于Map模型开发,可以继承Map模型子任务失败自动重试的特性
image

目录
相关文章
|
分布式计算 并行计算 数据库
Schedulerx2.0分布式计算原理&最佳实践
1. 前言 Schedulerx2.0的客户端提供分布式执行、多种任务类型、统一日志等框架,用户只要依赖schedulerx-worker这个jar包,通过schedulerx2.0提供的编程模型,简单几行代码就能实现一套高可靠可运维的分布式执行引擎。
24098 2
|
缓存 Cloud Native 调度
Fluid支持分层数据缓存本地性调度(Tiered Locality Scheduling)
依赖容器化带来的高效部署、敏捷迭代,以及云计算在资源成本和弹性扩展方面的天然优势,以 Kubernetes 为代表的云原生编排框架吸引着越来越多的 AI 与大数据应用在其上部署和运行。但是数据密集型应用计算框架的设计理念和云原生灵活的应用编排的分歧,导致了数据访问和计算瓶颈。 CNCF开源项目Fluid作为 AI 与大数据云原生应用提供一层高效便捷的数据抽象,将数据从存储抽象出来,针对具体的场景(比如大模型),加速计算访问数据。
914 0
|
NoSQL Java 数据处理
【Spring专题】「开发指南」手把手教你将@Schedule任务调度升级为分布式调度@DistributeSchedule
【Spring专题】「开发指南」手把手教你将@Schedule任务调度升级为分布式调度@DistributeSchedule
475 0
【Spring专题】「开发指南」手把手教你将@Schedule任务调度升级为分布式调度@DistributeSchedule
|
资源调度 分布式计算 运维
阿里巴巴任务调度SchedulerX支持一次性任务
阿里巴巴任务调度SchedulerX2.0支持一次性任务
1263 2
|
数据可视化 Linux Python
Schedule | 轻量化的定时任务模块
Schedule | 轻量化的定时任务模块
393 0
|
运维 资源调度 调度
阿里巴巴任务调度SchedulerX兼容XXL-JOB
阿里巴巴任务调度SchedulerX2.0兼容XXL-JOB任务接口,支持@XxlJob新注解和@JobHandler老注解方式,用户不需要修改一行代码,即可以将XXL-JOB任务在SchedulerX2.0平台上托管。
4205 1
阿里巴巴任务调度SchedulerX兼容XXL-JOB
|
运维 资源调度 监控
阿里巴巴任务调度SchedulerX兼容ElasticJob
阿里巴巴任务调度SchedulerX2.0兼容开源ElasticJob任务接口,用户不需要修改一行代码,即可以将ElasticJob任务在SchedulerX2.0平台上托管,享有低成本、免运维、可视化、报警监控等能力。
1012 0
阿里巴巴任务调度SchedulerX兼容ElasticJob
|
缓存 资源调度 运维
SchedulerX 如何帮助用户解决分布式任务调度难题?
本文分别对任务调度平台的资源定义、可视化管控能力、分布式批处理能力进行了简述,并基于 SchedulerX 的能力结合实际业务场景提供了一些基础参考案例。希望通过上述内容能让大家方便地熟悉任务调度平台接入使用概况,对于现有用户也可结合自身团队特点进行平台资源管控隔离,以及在产品业务量增长后通过分布式批处理能力来提升处理效率。
|
资源调度 监控 数据可视化
阿里巴巴任务调度SchedulerX支持日志服务
阿里巴巴任务调度SchedulerX2.0的日志服务,可以让业务方不需要修改一行代码,只需要增加一个log4j2/logback的配置,即可将每次任务调度的框架日志和业务日志进行收集,同时提供白屏日志检索功能,可以通过任务调度平台快速定位任务失败的原因。
1193 0
|
资源调度 分布式计算 运维
SchedulerX2.0支持一次性任务
SchedulerX2.0支持一次性任务
543 0