Python的高级特征你知多少?

简介: IEEE Spectrum 于9月6日发布了2019年最受欢迎的编程语言排名,无疑Python蝉联第一,成绩颇为亮眼。从前年开始,Python 就开始霸占榜单长达 2 年,成为编程市场上份额最高的语言。Python 多好用不用多说,大家看看自己用的语言就知道了。但是 Python 隐藏的高级功能你都 get 了吗?本文中,作者列举了 Python 中五种略高级的特征以及它们的使用方法,快来一探究竟吧!

下面是 Python 的 5 种高级特征,以及它们的用法。

01
Lambda 函数
Lambda 函数是一种比较小的匿名函数——匿名是指它实际上没有函数名。
Python 函数通常使用 def a_function_name() 样式来定义,但对于 lambda 函数,我们根本没为它命名。这是因为 lambda 函数的功能是执行某种简单的表达式或运算,而无需完全定义函数。
lambda 函数可以使用任意数量的参数,但表达式只能有一个。
x = lambda a, b : a * b
print(x(5, 6)) # prints '30'

x = lambda a : a*3 + 3
print(x(3)) # prints '12'

看它多么简单!我们执行了一些简单的数学运算,而无需定义整个函数。这是 Python 的众多特征之一,这些特征使它成为一种干净、简单的编程语言。

02
Map 函数
Map() 是一种内置的 Python 函数,它可以将函数应用于各种数据结构中的元素,如列表或字典。对于这种运算来说,这是一种非常干净而且可读的执行方式。
def square_it_func(a):

return a * a

x = map(square_it_func, [1, 4, 7])
print(x) # prints '[1, 16, 49]'

def multiplier_func(a, b):

return a * b

x = map(multiplier_func, [1, 4, 7], [2, 5, 8])
print(x) # prints '[2, 20, 56]'看看上面的示例!我们可以将函数应用于单个或多个列表。实际上,你可以使用任何 Python 函数作为 map 函数的输入,只要它与你正在操作的序列元素是兼容的。

03
Filter 函数
filter 内置函数与 map 函数非常相似,它也将函数应用于序列结构(列表、元组、字典)。二者的关键区别在于 filter() 将只返回应用函数返回 True 的元素。
详情请看如下示例:

Our numbers

numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]

Function that filters out all numbers which are odd

def filter_odd_numbers(num):

if num % 2 == 0:
    return True
else:
    return False

filtered_numbers = filter(filter_odd_numbers, numbers)

print(filtered_numbers)

filtered_numbers = [2, 4, 6, 8, 10, 12, 14]

我们不仅评估了每个列表元素的 True 或 False,filter() 函数还确保只返回匹配为 True 的元素。非常便于处理检查表达式和构建返回列表这两步。

04
Itertools 模块
Python 的 Itertools 模块是处理迭代器的工具集合。迭代器是一种可以在 for 循环语句(包括列表、元组和字典)中使用的数据类型。
使用 Itertools 模块中的函数让你可以执行很多迭代器操作,这些操作通常需要多行函数和复杂的列表理解。关于 Itertools 的神奇之处,请看以下示例:
from itertools import *

Easy joining of two lists into a list of tuples

for i in izip([1, 2, 3], ['a', 'b', 'c']):

print i

('a', 1)

('b', 2)

('c', 3)

The count() function returns an interator that

produces consecutive integers, forever. This

one is great for adding indices next to your list

elements for readability and convenience

for i in izip(count(1), ['Bob', 'Emily', 'Joe']):

print i

(1, 'Bob')

(2, 'Emily')

(3, 'Joe')

The dropwhile() function returns an iterator that returns

all the elements of the input which come after a certain

condition becomes false for the first time.

def check_for_drop(x):

print 'Checking: ', x
return (x > 5)

for i in dropwhile(should_drop, [2, 4, 6, 8, 10, 12]):

print 'Result: ', i

Checking: 2

Checking: 4

Result: 6

Result: 8

Result: 10

Result: 12

The groupby() function is great for retrieving bunches

of iterator elements which are the same or have similar

properties

a = sorted([1, 2, 1, 3, 2, 1, 2, 3, 4, 5])
for key, value in groupby(a):

print(key, value), end=' ')

(1, [1, 1, 1])

(2, [2, 2, 2])

(3, [3, 3])

(4, [4])

(5, [5])

05
Generator 函数
Generator 函数是一个类似迭代器的函数,即它也可以用在 for 循环语句中。这大大简化了你的代码,而且相比简单的 for 循环,它节省了很多内存。
比如,我们想把 1 到 1000 的所有数字相加,以下代码块的第一部分向你展示了如何使用 for 循环来进行这一计算。
如果列表很小,比如 1000 行,计算所需的内存还行。但如果列表巨长,比如十亿浮点数,这样做就会出现问题了。使用这种 for 循环,内存中将出现大量列表,但不是每个人都有无限的 RAM 来存储这么多东西的。Python 中的 range() 函数也是这么干的,它在内存中构建列表。
代码中第二部分展示了使用 Python generator 函数对数字列表求和。generator 函数创建元素,并只在必要时将其存储在内存中,即一次一个。这意味着,如果你要创建十亿浮点数,你只能一次一个地把它们存储在内存中!Python 2.x 中的 xrange() 函数就是使用 generator 来构建列表。
上述例子说明:如果你想为一个很大的范围生成列表,那么就需要使用 generator 函数。如果你的内存有限,比如使用移动设备或边缘计算,使用这一方法尤其重要。
也就是说,如果你想对列表进行多次迭代,并且它足够小,可以放进内存,那最好使用 for 循环或 Python 2.x 中的 range 函数。因为 generator 函数和 xrange 函数将会在你每次访问它们时生成新的列表值,而 Python 2.x range 函数是静态的列表,而且整数已经置于内存中,以便快速访问。

(1) Using a for loopv

numbers = list()

for i in range(1000):

numbers.append(i+1)

total = sum(numbers)

(2) Using a generator

def generate_numbers(n):

 num, numbers = 1, []
 while num < n:
       numbers.append(num)
 num += 1
 return numbers

total = sum(generate_numbers(1000))

# (3) range() vs xrange()
total = sum(range(1000 + 1))
total = sum(xrange(1000 + 1))

任何编程语言的高级特征通常都是通过大量的使用经验才发现的。
这几年,学 Python 的程序员的确越来越多了,甚至不少人把 Python 当作第一语言来学习。也难怪,Python 的优点太多了,它语言简洁、开发效率高、可移植性强,并且可以和其他编程语言(比如C++)轻松无缝衔接。

目录
相关文章
|
2月前
|
机器学习/深度学习 算法 数据可视化
8种数值变量的特征工程技术:利用Sklearn、Numpy和Python将数值转化为预测模型的有效特征
特征工程是机器学习流程中的关键步骤,通过将原始数据转换为更具意义的特征,增强模型对数据关系的理解能力。本文重点介绍处理数值变量的高级特征工程技术,包括归一化、多项式特征、FunctionTransformer、KBinsDiscretizer、对数变换、PowerTransformer、QuantileTransformer和PCA,旨在提升模型性能。这些技术能够揭示数据中的潜在模式、优化变量表示,并应对数据分布和内在特性带来的挑战,从而提高模型的稳健性和泛化能力。每种技术都有其独特优势,适用于不同类型的数据和问题。通过实验和验证选择最适合的变换方法至关重要。
46 5
8种数值变量的特征工程技术:利用Sklearn、Numpy和Python将数值转化为预测模型的有效特征
|
1月前
|
机器学习/深度学习 数据格式 Python
将特征向量转化为Python代码
将特征向量转化为Python代码
|
1月前
|
机器学习/深度学习 数据格式 Python
将特征向量转化为Python代码
将特征向量转化为Python代码
|
2月前
|
机器学习/深度学习 数据格式 Python
将特征向量转化为Python代码
将特征向量转化为Python代码
|
1月前
|
机器学习/深度学习 开发者 Python
Python中进行特征重要性分析的9个常用方法
在Python机器学习中,特征重要性分析是理解模型预测关键因素的重要步骤。本文介绍了九种常用方法:排列重要性、内置特征重要性(如`coef_`)、逐项删除法、相关性分析、递归特征消除(RFE)、LASSO回归、SHAP值、部分依赖图和互信息。这些方法适用于不同类型模型和场景,帮助识别关键特征,指导特征选择与模型解释。通过综合应用这些技术,可以提高模型的透明度和预测性能。
113 0
|
3月前
|
机器学习/深度学习 分布式计算 大数据
几行 Python 代码就可以提取数百个时间序列特征
几行 Python 代码就可以提取数百个时间序列特征
|
3月前
|
机器学习/深度学习 存储 算法
【2024泰迪杯】B 题:基于多模态特征融合的图像文本检索Python代码baseline
本文通过可视化分析,总结了2024年考研国家分数线的变化趋势,指出管理类MBA降低5分,哲学、历史学、理学、医学等10个专业分数线上涨,而经济学等专业出现下降,反映出不同专业分数线受考生数量、竞争情况和政策调整等因素的影响。
70 2
【2024泰迪杯】B 题:基于多模态特征融合的图像文本检索Python代码baseline
|
3月前
|
机器学习/深度学习 存储 算法
【2024泰迪杯】B 题:基于多模态特征融合的图像文本检索Python代码实现
本文提供了2024泰迪杯B题“基于多模态特征融合的图像文本检索”的Python代码实现,包括问题分析、多模态特征提取、特征融合模型和算法的构建,以及如何使用召回率作为评价标准进行模型性能评估的详细说明。
53 2
【2024泰迪杯】B 题:基于多模态特征融合的图像文本检索Python代码实现
|
3月前
|
数据采集 存储 算法
【2024泰迪杯】B 题:基于多模态特征融合的图像文本检索20页论文及Python代码
本文介绍了2024年泰迪杯B题的解决方案,该题目要求构建基于多模态特征融合的图像文本检索模型和算法,通过深入分析和预处理数据集,构建了OFA、BertCLIP和ChineseCLIP三种多模态特征融合模型,并通过投票融合机制优化检索效果,实验结果表明所提模型在图像与文本检索任务中显著提高了检索准确性和效率。
107 2
|
4月前
|
数据采集 Java C语言
Python面向对象的高级动态可解释型脚本语言简介
Python是一种面向对象的高级动态可解释型脚本语言。
38 3