【2024泰迪杯】B 题:基于多模态特征融合的图像文本检索Python代码实现

本文涉及的产品
图像搜索,7款服务类型 1个月
简介: 本文提供了2024泰迪杯B题“基于多模态特征融合的图像文本检索”的Python代码实现,包括问题分析、多模态特征提取、特征融合模型和算法的构建,以及如何使用召回率作为评价标准进行模型性能评估的详细说明。

更新时间:2024-4-6

【2024泰迪杯】B 题:基于多模态特征融合的图像文本检索Python代码实现

在这里插入图片描述

相关链接

  1. 【2024泰迪杯】A 题:生产线的故障自动识别与人员配置 Python代码实现

  2. 【2024泰迪杯】B 题:基于多模态特征融合的图像文本检索Python代码实现

  3. 【2024泰迪杯】B 题:基于多模态特征融合的图像文本检索Python代码baseline

  4. 【2024泰迪杯】C 题:竞赛论文的辅助自动评阅 问题分析及Python 代码实现

1 题目

2024 年(第 12 届)“泰迪杯”数据挖掘挑战赛—B 题:基于多模态特征融合的图像文本检索

一、问题背景

随着近年来智能终端设备和多媒体社交网络平台的飞速发展,多媒体数据呈现海量增长的趋势,使当今主流的社交网络平台充斥着海量的文本、图像等多模态媒体数据,也使得人们对不同模态数据之间互相检索的需求不断增加。有效的信息检索和分析可以大大提高平台多模态数据的利用率及用户的使用体验,而不同模态间存在显著的语义鸿沟,大大制约了海量多模态数据的分析及有效信息挖掘。因此,在海量的数据中实现跨模态信息的精准检索就成为当今学术界面临的重要挑战。图像和文本作为信息传递过程中常见的两大模态,它们之间的交互检索不仅能有效打破视觉和语言之间的语义鸿沟和分布壁垒,还能促进许多应用的发展,如跨模态检索、图像标注、视觉问答等。 图像文本检索指的是输入某一模态的数据(例如图像),通过训练的模型自动检索出与之最相关的另一模态数据(例如文本),它包括两个方向的检索,即基于文本的图像检索和基于图像的文本检索,如图 1 所示。基于文本的图像检索的目的是从数据库中找到与输入句子相匹配的图像作为输出结果;基于图像的文本检索根据输入图片,模型从数据库中自动检索出能够准确描述图片内容的文字。然而,来自图像和来自文本的特征存在固有的数据分布的差异,也被称为模态间的“异构鸿沟”,使得度量图像和文本之间的语义相关性困难重重。

在这里插入图片描述

图 1 图像文本检索

二、解决问题

本赛题是利用附件 1 的数据集,选择合适方法进行图像和文本的特征提取,基于提取的特征数据,建立适用于图像检索的多模态特征融合模型和算法,以及建立适用于文本检索的多模态特征融合模型和算法。基于建立的“多模态特征融合的图像文本检索”模型,完成以下两个任务,并提交相关材料。

(1) 基于图像检索的模型和算法,利用附件 2 中“word_test.csv”文件的文本信息, 对附件 2 的 ImageData 文件夹的图像进行图像检索,并罗列检索相似度较高的前五张图像, 将结果存放在“result1.csv”文件中(模板文件详见附件4 的result1.csv)。其中,ImageData文件夹中的图像 ID 详见附件 2 的“image_data.csv”文件。

(2) 基于文本检索的模型和算法,利用附件 3 中“image_test.csv”文件提及的图像

ID,对附件 3 的“word_data.csv”文件进行文本检索,并罗列检索相似度较高的前五条文本,将结果存放在“result2.csv”文件中(模板文件见附件 4 的 result2.csv)。其中, “image_test.csv”文件提及的图像 id,对应的图像数据可在附件 3 的 ImageData 文件夹中获取。

三、附件说明

附件 1、附件 2、附件 3 和附件 4 均含 csv 文件,采用 UTF-8 编码格式。

附件 1 : 图像文本检索的数据集 ,“ ImageData ” 压缩包存储五万张图像, “ImageWordData.csv”文件存储图像数据对应的文本信息,如表 1 所示。其中,“image_id”为图像 ID,也是图像的文件名,可依据图像 ID 获取“caption”中图像对应的文本信息。

表 1 图像文本检索的数据集——CSV 文件示例内容

image_id caption
Image14001001-0000.jpg 《绿色北京》摄影大赛胡子<人名>作品
Image14001001-0002.jpg 招聘计划学校现有教职工 1500 余人.
…… ……

附件 2:本赛题任务(1)的数据信息,包含“word_test.csv”、“image_data.csv”两份 CSV 文件和 ImageData 文件夹。其中,“word_test.csv”属于测试集图像检索文本信息,记录了文本 ID 和文本内容,文件格式如[表 2] 所示;“image_data.csv”记录了 ImageData 文件夹中的图像 ID,文件格式如[表 3] 所示;ImageData 文件夹为任务(1)的图像数据库,存放了能与“image_data.csv”匹配的图像数据,如[图 2]所示。

表 2 word_test.csv 示例内容

text_id caption
Word-1000004254 后来美国历史学家及情报部高官说:金无怠的的间谍活动是导致韩战延迟
Word-1000030077 茶主题商业综合体的未来当下,如果专业市场只是安于做一个收商铺租赁
…… ……

表 3 image_data.csv 示例内容

image_id
Image14001007-4040.jpg
Image14001007-4041.jpg
……

在这里插入图片描述

图 2 附件 2 的 ImageData 文件夹内容

附件 3:本赛题任务(2)的数据信息,包含“word_data.csv”、“image_test.csv”两份 CSV 文件和 ImageData 文件夹。其中,“word_data.csv”属于测试集文本检索文本信息,记录了文本 ID 和文本内容,文件格式如[表 4] 所示;“image_test.csv”记录了 ImageData 文件夹中的图像 ID,文件格式如[表 5]所示;ImageData 文件夹为任务(2)的图像数据库,存放了能与“image_test.csv”匹配的图像数据,如[图 3]所示。

表 4 word_data.csv 示例内容

text_id caption
Word-1000050001 洛阳楼盘 老城区楼盘 道北楼盘 保利<人名>
Word-1000050002 大众大众(进口)途锐 2015 款 基本型
…… ……

表 5 image_test.csv 示例内容

image_id
Image14001013-8213.jpg
Image14001013-8214.jpg
……

在这里插入图片描述

图 3 附件 3 的 ImageData 文件夹内容

附件 4:任务(1)和任务(2)结果文件的模板文件,具体字段名称和样例见[表 6] 和[表7]。result1.csv”中,text_id 是附件 2“word_test.csv”文件的文本 ID,similarity_ranking是相似度排名,result_image_id 是相似度排名对应在“image_data.csv”文件的图像 ID; “ result2.csv ”中, image_id 是附件 2 “ image_test.csv ”文件的 图像 ID , similarity_ranking 是相似度排名,result_text_id 是相似度排名对应在“word_data.csv”文件的文本 ID。

表 6 result1.csv 示例内容

text_id similarity_ranking result_image_id
Word-1000000001 1 Image00010804-0898.jpg
2 Image00015036-0854.jpg
3 Image00018364-0375.jpg
4 Image00042681-0598.jpg
5 Image00038751-0658.jpg
Word-1000000002 1 Image00010804-0697.jpg
2 Image00015036-0158.jpg
3 Image00018364-0319.jpg
4 Image00042681-0135.jpg
5 Image00038751-0356.jpg
…… …… ……

表 7 result2.csv 示例内容

image_id similarity_ranking result_text_id
Image00012212-0001.jpg 1 Word-1000001175
2 Word-1000001658
3 Word-1000001574
4 Word-1000001359
5 Word-1000001514
Image00012212-0002.jpg 1 Word-1000001124
2 Word-1000001242
3 Word-1000001425
4 Word-1000001113
5 Word-1000001854
…… …… ……

四、评价标准

图像文本检索包括两个具体的任务,即文本检索(Image-to-Text,I2T),即针对查询图像找到相关句子;以及图像检索(Text-to-Image,T2I),即给定查询语句检索符合文本描述的图像。为了与现有方法公平地进行比较,在文本检索问题和图像检索问题中都采用了广泛使用的评价指标:召回率 Recall at K( R@K)。 定义为查询结果中真实结果(ground- truth)排序在前 K 的比率,通常 K 可取值为 1、5 和 10,计算公式如式(1)所示。
R @ K = M a t c h e d t o p − K G r o u n d t r u t h t o t a l R@K = \frac{Matched_{top- K}}{Groundtruth_{total}} R@K\=Groundtruthtotal​Matchedtop−K​​

其中,$ Groundtruth_{total}$表示真实匹配结果出现的总次数, M a t c h e d t o p − K Matched_{top- K} Matchedtop−K​表示在排序前K 个输出结果中出现匹配样本的次数。R@K 反映了在图像检索和文本检索中模型输出前 K 个结果中正确结果出现的比例。本赛题的评价标准设定 K=5,即评价标准为 R@5。

2 问题分析

这个问题分成两个部分来分析:图像检索的多模态特征融合模型和算法,以及文本检索的多模态特征融合模型和算法。

(1)图像特征提取

首先,需要选择合适的方法对图像进行特征提取,常见的图像特征提取方法包括:SIFT(尺度不变特征转换)、SURF(加速稳健特征)、HOG(方向梯度直方图)、CNN(卷积神经网络)等

(2)文本特征提取

对于文本数据,可以使用传统的词袋模型或者更加先进的词嵌入模型(如Word2Vec、FastText等)来提取文本特征。

(3)多模态特征融合模型和算法

分别得到图像和文本的特征后,建立一个多模态特征融合模型来整合这些特征。常见的模型包括:向量拼接(Concatenation)、双向编码器(Bi-Encoder)、Transformer 模型、多层感知机(MLP)、注意力机制(Attention)

(4)特定的损失函数

在多模态的模型中,需要考虑对应的损失函数(如Triplet Loss、Contrastive Loss等)来训练模型,使得模型能够更好地学习多模态特征融合的表示能力。

3 多模态的参考论文及代码

(1) “X-ModalNet: A Semi-Paired Cross-Modal Network for RGB-D Salient Object Detection” (2019)
提出了一种半配对跨模态网络(X-ModalNet),用于RGB-D显著对象检测任务。网络利用跨模态交叉注意力来增强特征表达,并融合来自不同模态的信息。

代码:https://github.com/CommonClimate/CCA?utm\_source=catalyzex.com

(2)SMAN: Stacked multimodal attention network for cross-modal image–text retrieval

(3)Deep canonical correlation analysis with progressive and hypergraph learning for cross-modal retrieval

(4)Multi-view multi-label canonical correlation analysis for cross-modal matching and retrieval

代码:https://github.com/Rushil231100/MVMLCCA

(5)Multi-scale image–text matching network for scene and spatio-temporal images

(6)Stacked Cross Attention for Image-Text Matching

代码:https://github.com/kuanghuei/SCAN

(7)Look, Imagine and Match: Improving Textual-Visual Cross-Modal Retrieval with Generative Models

提出利用生成模型来提升文本视觉跨模态检索。LIM模型首先观察图像,然后想象与文本匹配的视觉内容,最后匹配对应的特征。

(8)Adaptive Text Recognition through Visual Matching

代码:https://github.com/tesseract-ocr/tessdoc

(9)LXMERT: Learning Cross-Modality Encoder Representations from Transformers

代码:https://paperswithcode.com/paper/lxmert-learning-cross-modality-encoder

(10)Learning rich touch representations through cross-modal self-supervision

代码:https://github.com/google-deepmind/deepmind-research

(11)CLaMP: Contrastive Language-Music Pre-training for Cross-Modal Symbolic Music Information Retrieval

代码:https://github.com/microsoft/muzic

(12)UniXcoder: Unified Cross-Modal Pre-training for Code Representation

代码:https://github.com/microsoft/CodeBERT

(13)mPLUG: Effective and Efficient Vision-Language Learning by Cross-modal Skip-connections

代码:https://paperswithcode.com/paper/mplug-effective-and-efficient-vision-language

3 Python实现

【2024泰迪杯】B 题:基于多模态特征融合的图像文本检索Python代码baseline
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4 完整资料下载

请下载完整资料
在这里插入图片描述

目录
相关文章
|
2天前
|
设计模式 开发框架 缓存
探索Python中的装饰器:简化代码,增强功能
【9月更文挑战第16天】在Python的世界里,装饰器宛如一位巧手魔术师,轻轻一挥魔杖,便能让我们的函数和类焕发新生。本文将带你领略装饰器的魔力,从基础概念到实战应用,一步步解锁装饰器的强大潜能。让我们一起踏上这段奇妙的旅程,探索如何用装饰器简化代码,增强功能。
|
2天前
|
测试技术 Python
Python中的装饰器:简化代码的魔法
【9月更文挑战第16天】在Python编程的世界里,装饰器就像是一把瑞士军刀,它们为函数和类赋予了额外的超能力。本文将带你探索装饰器的秘密,了解如何利用这一工具来简化代码、增强可读性并提升效率。从基础概念到实际案例,我们将一步步揭示装饰器的神秘面纱,让你的代码更加优雅和强大。
|
2天前
|
设计模式 缓存 开发者
探索Python中的装饰器:提升代码复用性的利器
本文深入探讨了Python中强大的装饰器功能,揭示了其如何通过元编程和闭包等技术手段,优雅地实现代码的复用与扩展。从基本概念到高级应用,我们将一步步揭开装饰器背后的奥秘,并通过实例展示其在实际项目开发中的巨大价值。无论是想要简化函数调用流程、增强函数功能,还是实现AOP(面向切面编程),掌握装饰器都是每位Python开发者必备的技能。
|
2天前
|
缓存 开发者 Python
探索Python中的装饰器:提升代码复用性与可读性
本文旨在深入探讨Python装饰器的概念、实现及其应用。通过实例分析,本文展示了如何利用装饰器提高代码的模块化和重用性,从而优化开发流程。我们将从装饰器的基本定义入手,逐步解析其工作机制,并通过案例展示如何在实际项目中有效利用装饰器。
6 0
|
机器学习/深度学习 算法 数据挖掘
一文归纳Python特征生成方法(全)
创造新的特征是一件十分困难的事情,需要丰富的专业知识和大量的时间。机器学习应用的本质基本上就是特征工程。 ——Andrew Ng
|
4天前
|
Python
Python编程中的异常处理:理解与实践
【9月更文挑战第14天】在编码的世界里,错误是不可避免的。它们就像路上的绊脚石,让我们的程序跌跌撞撞。但是,如果我们能够预见并优雅地处理这些错误,我们的程序就能像芭蕾舞者一样,即使在跌倒的边缘,也能轻盈地起舞。本文将带你深入了解Python中的异常处理机制,让你的代码在面对意外时,依然能保持优雅和从容。
138 73
|
4天前
|
人工智能 数据挖掘 数据处理
揭秘Python编程之美:从基础到进阶的代码实践之旅
【9月更文挑战第14天】本文将带领读者深入探索Python编程语言的魅力所在。通过简明扼要的示例,我们将揭示Python如何简化复杂问题,提升编程效率。无论你是初学者还是有一定经验的开发者,这篇文章都将为你打开一扇通往高效编码世界的大门。让我们开始这段充满智慧和乐趣的Python编程之旅吧!
|
3天前
|
数据采集 机器学习/深度学习 人工智能
Python编程入门:从零基础到实战应用
【9月更文挑战第15天】本文将引导读者从零开始学习Python编程,通过简单易懂的语言和实例,帮助初学者掌握Python的基本语法和常用库,最终实现一个简单的实战项目。文章结构清晰,分为基础知识、进阶技巧和实战应用三个部分,逐步深入,让读者在学习过程中不断积累经验,提高编程能力。
|
3天前
|
机器学习/深度学习 数据采集 人工智能
探索Python的奥秘:从基础到进阶的编程之旅
在这篇文章中,我们将深入探讨Python编程的基础知识和进阶技巧。通过清晰的解释和实用的示例,无论您是编程新手还是有经验的开发者,都能从中获得有价值的见解。我们将覆盖从变量、数据类型到类和对象的各个方面,助您在编程世界里游刃有余。
21 10
|
2天前
|
存储 机器学习/深度学习 数据挖掘
深入浅出:Python编程入门与实践
【9月更文挑战第16天】本文以“深入浅出”的方式,引领读者步入Python编程的世界。从基础语法到实际应用,我们将一步步探索Python的魅力所在。无论你是编程新手,还是希望拓展技能的老手,这篇文章都将为你提供有价值的信息和指导。通过本文的学习,你将能够编写出简单而实用的Python程序,为进一步深入学习打下坚实的基础。让我们一起开始这段编程之旅吧!