Spark与HBase的整合

简介: 之前因为仅仅是把HBase当成一个可横向扩展并且具有持久化能力的KV数据库,所以只用在了指标存储上,参看很早之前的一篇文章基于HBase做Storm 实时计算指标存储。这次将HBase用在了用户行为存储上,因为Rowkey的过滤功能也很不错,可以很方便的把按人或者内容的维度过滤出所有的行为。
前言
之前因为仅仅是把HBase当成一个可横向扩展并且具有持久化能力的KV数据库,所以只用在了指标存储上,参看很早之前的一篇文章 基于HBase做Storm 实时计算指标存储。这次将HBase用在了用户行为存储上,因为Rowkey的过滤功能也很不错,可以很方便的把按人或者内容的维度过滤出所有的行为。从某种意义上,HBase的是一个有且仅有一个多字段复合索引的存储引擎。

虽然我比较推崇实时计算,不过补数据或者计算历史数据啥的,批处理还是少不了的。对于历史数据的计算,其实我是有两个选择的,一个是基于HBase的已经存储好的行为数据进行计算,或者基于Hive的原始数据进行计算,最终选择了前者,这就涉及到Spark(StreamingPro) 对HBase的批处理操作了。
整合过程

和Spark 整合,意味着最好能有Schema(Mapping),因为Dataframe 以及SQL API 都要求你有Schema。 遗憾的是HBase 有没有Schema取决于使用者和场景。通常SparkOnHBase的库都要求你定义一个Mapping(Schema),比如hortonworks的 SHC(https://github.com/hortonworks-spark/shc) 就要求你定义一个如下的配置:

{
"rowkey":"key",
"table":{"namespace":"default", "name":"pi_user_log", "tableCoder":"PrimitiveType"},
"columns":{"col0":{"cf":"rowkey", "col":"key", "type":"string"},
"col1":{"cf":"f","col":"col1", "type":"string"}
}
}

看上面的定义已经还是很容易看出来的。对HBase的一个列族和列取一个名字,这样就可以在Spark的DataSource API使用了,关于如何开发Spark DataSource API可以参考我的这篇文章利用 Spark DataSource API 实现Rest数据源中使用,SHC大体实现的就是这个API。现在你可以这么用了:

 val cat = "{\n\"rowkey\":\"key\",\"table\":{\"namespace\":\"default\", \"name\":\"pi_user_log\", \"tableCoder\":\"PrimitiveType\"},\n\"columns\":{\"col0\":{\"cf\":\"rowkey\", \"col\":\"key\", \"type\":\"string\"},\n\"28360592\":{\"cf\":\"f\",\"col\":\"28360592\", \"type\":\"string\"}\n}\n}"
    val cc = sqlContext
      .read
      .options(Map(HBaseTableCatalog.tableCatalog -> cat))
      .format("org.apache.spark.sql.execution.datasources.hbase")
      .load()
不过当你有成千上万个列,那么这个就无解了,你不大可能一一定义,而且很多时候使用者也不知道会有哪些列,列名甚至可能是一个时间戳。我们现在好几种情况都遇到了,所以都需要解决:
  1. 自动获取HBase里所有的列形成Schema,这样就不需要用户配置了。
  2. 规定HBase只有两个列,一个rowkey,一个 content,content 是一个map,包含所有以列族+列名为key,对应内容为value。

先说说第二种方案(因为其实第一种方案也要依赖于第二种方案):

{
        "name": "batch.sources",
        "params": [
          {
            "inputTableName": "log1",
            "format": "org.apache.spark.sql.execution.datasources.hbase.raw",
            "path": "-",
            "outputTable": "log1"
          }
        ]
      },
      {
        "name": "batch.sql",
        "params": [
          {
            "sql": "select rowkey,json_value_collect(content) as actionList from log1",
            "outputTableName":"finalTable"
          }
        ]
      },
首先我们配置了一个HBase的表,叫log1,当然,这里是因为程序通过hbase-site.xml获得HBase的链接,所以配置上你看不到HBase相关的信息。接着呢,在SQL 里你就可以对content 做处理了。我这里是把content 转化成了JSON格式字符串。再之后你就可以自己写一个UDF函数之类的做处理了,从而实现你复杂的业务逻辑。我们其实每个字段里存储的都是JSON,所以我其实不关心列名,只要让我拿到所有的列就好。而上面的例子正好能够满足我这个需求了。

而且实现这个HBase DataSource 也很简单,核心逻辑大体如下:
case class HBaseRelation(
                          parameters: Map[String, String],
                          userSpecifiedschema: Option[StructType]
                        )(@transient val sqlContext: SQLContext)
  extends BaseRelation with TableScan with Logging {

  val hbaseConf = HBaseConfiguration.create()


  def buildScan(): RDD[Row] = {
    hbaseConf.set(TableInputFormat.INPUT_TABLE, parameters("inputTableName"))
    val hBaseRDD = sqlContext.sparkContext.newAPIHadoopRDD(hbaseConf, classOf[TableInputFormat], classOf[ImmutableBytesWritable], classOf[Result])
      .map { line =>
        val rowKey = Bytes.toString(line._2.getRow)

        import net.liftweb.{json => SJSon}
        implicit val formats = SJSon.Serialization.formats(SJSon.NoTypeHints)

        val content = line._2.getMap.navigableKeySet().flatMap { f =>
          line._2.getFamilyMap(f).map { c =>
            (Bytes.toString(f) + ":" + Bytes.toString(c._1), Bytes.toString(c._2))
          }
        }.toMap

        val contentStr = SJSon.Serialization.write(content)

        Row.fromSeq(Seq(UTF8String.fromString(rowKey), UTF8String.fromString(contentStr)))
      }
    hBaseRDD
  }
}
那么我们回过头来,如何让Spark自动发现Schema呢?大体你还是需要过滤所有数据得到列的合集,然后形成Schema的,成本开销很大。我们也可以先将我们的数据转化为JSON格式,然后就可以利用Spark已经支持的JSON格式来自动推倒Schema的能力了。

总体而言,其实并不太鼓励大家使用Spark 对HBase进行批处理,因为这很容易让HBase过载,比如内存溢出导致RegionServer 挂掉,最遗憾的地方是一旦RegionServer 挂掉了,会有一段时间读写不可用,而HBase 又很容易作为实时在线程序的存储,所以影响很大。
相关实践学习
lindorm多模间数据无缝流转
展现了Lindorm多模融合能力——用kafka API写入,无缝流转在各引擎内进行数据存储和计算的实验。
云数据库HBase版使用教程
  相关的阿里云产品:云数据库 HBase 版 面向大数据领域的一站式NoSQL服务,100%兼容开源HBase并深度扩展,支持海量数据下的实时存储、高并发吞吐、轻SQL分析、全文检索、时序时空查询等能力,是风控、推荐、广告、物联网、车联网、Feeds流、数据大屏等场景首选数据库,是为淘宝、支付宝、菜鸟等众多阿里核心业务提供关键支撑的数据库。 了解产品详情: https://cn.aliyun.com/product/hbase   ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库 ECS 实例和一台目标数据库 RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
目录
相关文章
|
4月前
|
Java Shell 分布式数据库
【大数据技术Hadoop+Spark】HBase数据模型、Shell操作、Java API示例程序讲解(附源码 超详细)
【大数据技术Hadoop+Spark】HBase数据模型、Shell操作、Java API示例程序讲解(附源码 超详细)
134 0
|
4月前
|
分布式计算 分布式数据库 API
Spark与HBase的集成与数据访问
Spark与HBase的集成与数据访问
|
分布式计算 分布式数据库 Scala
Spark查询Hbase小案例
写作目的 1)正好有些Spark连接HBase的需求,当个笔记本,到时候自己在写的时候,可以看 2)根据rowkey查询其实我还是查询了好久才找到,所以整理了一下 3)好久没发博客了,水一篇
201 0
Spark查询Hbase小案例
|
分布式计算 数据处理 分布式数据库
《基于HBase和Spark构建企业级数据处理平台》电子版地址
基于HBase和Spark构建企业级数据处理平台
103 0
《基于HBase和Spark构建企业级数据处理平台》电子版地址
|
分布式计算 Hadoop Linux
云计算集群搭建记录[Hadoop|Zookeeper|Hbase|Spark | Docker]更新索引 |动态更新
为了能够更好的查看所更新的文章,讲该博文设为索引 小约定 为了解决在编辑文件等操作的过程中的权限问题,博主一律默认采用root账户登录 对于初次安装的用户可以采用如下命令行:
134 0
云计算集群搭建记录[Hadoop|Zookeeper|Hbase|Spark | Docker]更新索引 |动态更新
|
SQL 分布式计算 关系型数据库
|
分布式计算 安全 Shell
Maxcompute Spark 访问 阿里云 Hbase
引子 本来这个东西是没啥好写的,但是在帮客户解决问题的时候,发现链路太长,不能怪客户弄不出来,记录一下 需求列表 MaxCompute Spark包 (写文章时刻为版本 0.32.1, 请自行更新,本文不是文档) Spark 配置 spark.
Maxcompute Spark 访问 阿里云 Hbase
|
分布式计算 Spark
spark访问hbase
import org.apache.hadoop.hbase.{HBaseConfiguration, HTableDescriptor} import org.apache.hadoop.hbase.mapreduce.TableInputFormat import org.apache.spark.rdd.NewHadoopRDD val conf = HBaseConfigurat
1675 0
|
2月前
|
机器学习/深度学习 分布式计算 算法
Spark快速大数据分析PDF下载读书分享推荐
《Spark快速大数据分析》适合初学者,聚焦Spark实用技巧,同时深入核心概念。作者团队来自Databricks,书中详述Spark 3.0新特性,结合机器学习展示大数据分析。Spark是大数据分析的首选工具,本书助你驾驭这一利器。[PDF下载链接][1]。 ![Spark Book Cover][2] [1]: https://zhangfeidezhu.com/?p=345 [2]: https://i-blog.csdnimg.cn/direct/6b851489ad1944548602766ea9d62136.png#pic_center
112 1
Spark快速大数据分析PDF下载读书分享推荐
|
1月前
|
分布式计算 资源调度 大数据
【决战大数据之巅】:Spark Standalone VS YARN —— 揭秘两大部署模式的恩怨情仇与终极对决!
【8月更文挑战第7天】随着大数据需求的增长,Apache Spark 成为关键框架。本文对比了常见的 Spark Standalone 与 YARN 部署模式。Standalone 作为自带的轻量级集群管理服务,易于设置,适用于小规模或独立部署;而 YARN 作为 Hadoop 的资源管理系统,支持资源的统一管理和调度,更适合大规模生产环境及多框架集成。我们将通过示例代码展示如何在这两种模式下运行 Spark 应用程序。
139 3