PostgreSQL数据库监控中的统计学 - 对象空间的数据分布图

本文涉及的产品
云原生数据库 PolarDB MySQL 版,通用型 2核4GB 50GB
云原生数据库 PolarDB PostgreSQL 版,标准版 2核4GB 50GB
简介:
有时,我们为了直观的显示对象的空间占用及分布情况,我们可能会以图表的形式展示。
通常情况下,我们可以根据需求,以柱状图或者聚集图的形式来展示,从各个维度来了解数据空间占用的分布情况,例如:
1. bucket分布,就是按大小排序,选定要划分为几个bucket,每个bucket放同样数量的对象,输出bucket的边界,形式和pg_stats.histogram_bounds的输出类似。
方法举例,需要用到窗口函数ntile:
postgres=# select bucket,min(size),max(size),count(*) from (select relname,ntile(10) over( order by pg_relation_size(oid) ) bucket, pg_relation_size(oid) size from pg_class) t group by 1 order by 1;
 bucket |  min  |   max    | count 
--------+-------+----------+-------
      1 |     0 |        0 |    31
      2 |     0 |        0 |    30
      3 |     0 |        0 |    30
      4 |     0 |        0 |    30
      5 |     0 |     8192 |    30
      6 |  8192 |     8192 |    30
      7 |  8192 |    16384 |    30
      8 | 16384 |    16384 |    30
      9 | 16384 |    32768 |    30
     10 | 32768 | 36249600 |    30
(10 rows)

2. 按等间距线性分布,例如每100MB输出一组落在对应SIZE的对象。这种方式有点像systemtap的
@hist_linear分布
https://sourceware.org/systemtap/langref/Statistics_aggregates.html#SECTION00094100000000000000
方法举例:
postgres=# select pg_relation_size(oid)/1024/1024,count(*) from pg_class group by 1 order by 1;
 ?column? | count 
----------+-------
        0 |   299
       21 |     1
       34 |     1
(3 rows)

3. 按2^n间距指数分布,这种方式有点像systemtap的
@hist_log分布
https://sourceware.org/systemtap/langref/Statistics_aggregates.html#SECTION00094100000000000000
方法举例:
首先要将int转为二进制
http://blog.163.com/digoal@126/blog/static/16387704020132592725462/
create or replace function si32tob(i_num int) returns varbit as 
$$

declare
  o_bit text;
  o_len int;
  i_conv int;
  i_num_abs int;
  i_pos int;
begin
  if i_num = 0 then return varbit '0'; end if; 
   o_len := 32;
  i_conv := 2;
  i_num_abs := abs(i_num);
  i_pos := trunc((dlog1(i_num_abs))/0.693147180559945);
  o_bit := mod(i_num_abs,i_conv)::text;
  if i_pos >= 1 then
    for i in 1..i_pos loop
      o_bit := mod(i_num_abs>>i, i_conv)||o_bit;
    end loop;
  end if;
  if i_num >=0 then
    null;
  else
    o_len := o_len - char_length(o_bit) - 1;
    o_bit := repeat('0', o_len)||o_bit;
    o_bit := '1'||o_bit;
  end if;
  return o_bit::varbit;
end;

$$
 language plpgsql;
输出
postgres=# select 2^(bit_length(si32tob((pg_relation_size(oid))::int4))-1), count(*) from pg_class group by 1 order by 1;
 ?column? | count 
----------+-------
        1 |   145
     8192 |    67
    16384 |    60
    32768 |    14
    65536 |     6
   131072 |     4
   262144 |     7
   524288 |     1
 16777216 |     1
 33554432 |     1
(10 rows)

4. 聚集分布,可以用k-mean分布插件
http://blog.163.com/digoal@126/blog/static/163877040201571745048121/
[图]
K_Means

查询举例:
postgres=# select class,min(size),max(size),count(*) from (select kmeans(array[pg_relation_size(oid)],10) over() as class,pg_relation_size(oid) size from pg_class ) t group by 1 order by 1;
 class |   min    |   max    | count 
-------+----------+----------+-------
     0 |   671744 |   671744 |     1
     1 |   483328 |   483328 |     1
     2 |   475136 |   475136 |     1
     3 | 22487040 | 22487040 |     1
     4 |   352256 |   352256 |     1
     5 | 36249600 | 36249600 |     1
     6 |   278528 |   319488 |     4
     7 |   221184 |   221184 |     1
     8 |    57344 |   139264 |    10
     9 |        0 |    49152 |   285
(10 rows)

K_Means

相关实践学习
使用PolarDB和ECS搭建门户网站
本场景主要介绍基于PolarDB和ECS实现搭建门户网站。
阿里云数据库产品家族及特性
阿里云智能数据库产品团队一直致力于不断健全产品体系,提升产品性能,打磨产品功能,从而帮助客户实现更加极致的弹性能力、具备更强的扩展能力、并利用云设施进一步降低企业成本。以云原生+分布式为核心技术抓手,打造以自研的在线事务型(OLTP)数据库Polar DB和在线分析型(OLAP)数据库Analytic DB为代表的新一代企业级云原生数据库产品体系, 结合NoSQL数据库、数据库生态工具、云原生智能化数据库管控平台,为阿里巴巴经济体以及各个行业的企业客户和开发者提供从公共云到混合云再到私有云的完整解决方案,提供基于云基础设施进行数据从处理、到存储、再到计算与分析的一体化解决方案。本节课带你了解阿里云数据库产品家族及特性。
目录
相关文章
|
25天前
|
存储 人工智能 Cloud Native
云栖重磅|从数据到智能:Data+AI驱动的云原生数据库
在9月20日2024云栖大会上,阿里云智能集团副总裁,数据库产品事业部负责人,ACM、CCF、IEEE会士(Fellow)李飞飞发表《从数据到智能:Data+AI驱动的云原生数据库》主题演讲。他表示,数据是生成式AI的核心资产,大模型时代的数据管理系统需具备多模处理和实时分析能力。阿里云瑶池将数据+AI全面融合,构建一站式多模数据管理平台,以数据驱动决策与创新,为用户提供像“搭积木”一样易用、好用、高可用的使用体验。
云栖重磅|从数据到智能:Data+AI驱动的云原生数据库
|
27天前
|
SQL 关系型数据库 数据库
国产数据实战之docker部署MyWebSQL数据库管理工具
【10月更文挑战第23天】国产数据实战之docker部署MyWebSQL数据库管理工具
91 4
国产数据实战之docker部署MyWebSQL数据库管理工具
|
24天前
|
关系型数据库 分布式数据库 数据库
云栖大会|从数据到决策:AI时代数据库如何实现高效数据管理?
在2024云栖大会「海量数据的高效存储与管理」专场,阿里云瑶池讲师团携手AMD、FunPlus、太美医疗科技、中石化、平安科技以及小赢科技、迅雷集团的资深技术专家深入分享了阿里云在OLTP方向的最新技术进展和行业最佳实践。
|
27天前
|
存储 关系型数据库 MySQL
查询服务器CPU、内存、磁盘、网络IO、队列、数据库占用空间等等信息
查询服务器CPU、内存、磁盘、网络IO、队列、数据库占用空间等等信息
214 2
|
2月前
|
人工智能 Cloud Native 容灾
云数据库“再进化”,OB Cloud如何打造云时代的数据底座?
云数据库“再进化”,OB Cloud如何打造云时代的数据底座?
|
2月前
|
SQL 存储 关系型数据库
数据储存数据库管理系统(DBMS)
【10月更文挑战第11天】
101 3
|
2月前
|
SQL 存储 关系型数据库
添加数据到数据库的SQL语句详解与实践技巧
在数据库管理中,添加数据是一个基本操作,它涉及到向表中插入新的记录
|
2月前
|
SQL 监控 数据处理
SQL数据库数据修改操作详解
数据库是现代信息系统的重要组成部分,其中SQL(StructuredQueryLanguage)是管理和处理数据库的重要工具之一。在日常的业务运营过程中,数据的准确性和及时性对企业来说至关重要,这就需要掌握如何在数据库中正确地进行数据修改操作。本文将详细介绍在SQL数据库中如何修改数据,帮助读者更好
245 4
|
2月前
|
存储 人工智能 Cloud Native
云栖重磅|从数据到智能:Data+AI驱动的云原生数据库
阿里云瑶池在2024云栖大会上重磅发布由Data+AI驱动的多模数据管理平台DMS:OneMeta+OneOps,通过统一、开放、多模的元数据服务实现跨环境、跨引擎、跨实例的统一治理,可支持高达40+种数据源,实现自建、他云数据源的无缝对接,助力业务决策效率提升10倍。
|
2月前
|
关系型数据库 MySQL 数据库
使用Docker部署的MySQL数据库,数据表里的中文读取之后变成问号,如何处理?
【10月更文挑战第1天】使用Docker部署的MySQL数据库,数据表里的中文读取之后变成问号,如何处理?
67 3
下一篇
无影云桌面