人工神经网络之Python 实战

简介: Python是最好最热门的编程语言之一,以简单易学、应用广泛、类库强大而著称,是实现机器学习算法的首选语言。本文以人工神经网络的实战为例,证明需要深入理解算法的原理、优劣势等特点以及应用场景,以能达到应用自如的程度。本文选自《Python大战机器学习:数据科学家的第一个小目标》

引言:Python是最好最热门的编程语言之一,以简单易学、应用广泛、类库强大而著称,是实现机器学习算法的首选语言。本文以人工神经网络的实战为例,证明需要深入理解算法的原理、优劣势等特点以及应用场景,以能达到应用自如的程度。
本文选自《Python大战机器学习:数据科学家的第一个小目标》。

  在本次操作前,这里需要导入的包为:
               图1

感知机学习算法的原始形式

  给出生成线性可分数据集的生成算法:
              图2

  • 参数
     ■n:正类的样本点数量,也是负类的样本点数量。总的样本点数量为2n。
  • 返回值:所有的样本点组成的数组,形状为(2*n,4)。数组中的每一行代表一个样本点,由其特征x和标记y组成。

其过程为:首先在z轴坐标为20 的上方生成n个随机点作为正类,在z轴坐标为10 的下方生成n个随机点作为负类。此时在平面z= 10, z= 20 作为隔离带。然后45度旋转x坐标轴,再返回这些点在新坐标轴中的坐标。注意这里混洗了数据,否则会发现数据集的前半部分都是正类,后半部分都是负类,需要混洗数据从而让正负类交叉出现。

  绘制数据集的函数为:
                 图3

  • 参数

 ■ax:一个Axes3D实例,负责绘制图形。
 ■samples:代表训练数据集的数组,形状为(N,n_features+1),其中N为样本点的个数,n_features代表特征数量(这里为3,表示三个特征)。

plot_samples函数的用法为:
                    图4

  然后给出感知机学习算法的原始形式算法的函数(图形如下图所示):
            图5
  图6
                        perceptron_data
  

  • 参数

 ■train_data:代表训练数据集的数组,形状为(N,n_features+1),其中N为样本点的个数,n_features代表特征数量(这里为3,表示三个特征)。
 ■eta:学习率。
 ■w_0:即w0,是一个列向量。
 ■b_0:即b0,是一个标量。

  • 返回值:一个元组,成员为w,b 以及迭代次数。

其过程为:

  • 最外层循环只有在全部分类正确的这种情况下退出
  • 内层循环从前到后遍历所有的样本点。一旦发现某个样本点是误分类点,就更新w,b然后重新从头开始遍历所有的样本点。

由于需要绘制分离超平面,因此需要根据w,b 给出生成分离超平面的函数:
               图7

  • 参数

 ■x:分离超平面上点的x坐标组成的数组。

 ■y:分离超平面上点的y坐标组成的数组。

 ■w:即w,超平面的法向量,它是一个列向量。

 ■b:即b,超平面的截距。

  • 返回值:分离超平面上点的z坐标组成的数组。

其过程就是根据wxx+wyy+wzz+b=0这个方程求得的。

  综合上述函数,可以观察感知机学习算法的原始算法的运行情况:
               图8

  算法得到的w为[[-10.1] -68.08433252],分离超平面法向量为(-10.1,-68.08,64.85),它在y-z平面上的投影是一条直线,该直线的斜率为68.08/64.85=1.05,非常接近我们在生成数据时旋转45度角的设定。感知机学习算法的原始形式算法的函数perceptron_original 图形(如下图所示)。
      图9
  本文选自《Python大战机器学习:数据科学家的第一个小目标》,点此链接可在博文视点官网查看此书。
                    图片描述
  想及时获得更多精彩文章,可在微信中搜索“博文视点”或者扫描下方二维码并关注。
                       图片描述

相关文章
|
10天前
|
数据采集 缓存 定位技术
网络延迟对Python爬虫速度的影响分析
网络延迟对Python爬虫速度的影响分析
|
11天前
|
Python
Python中的异步编程:使用asyncio和aiohttp实现高效网络请求
【10月更文挑战第34天】在Python的世界里,异步编程是提高效率的利器。本文将带你了解如何使用asyncio和aiohttp库来编写高效的网络请求代码。我们将通过一个简单的示例来展示如何利用这些工具来并发地处理多个网络请求,从而提高程序的整体性能。准备好让你的Python代码飞起来吧!
30 2
|
18天前
|
数据采集 存储 JSON
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第27天】本文介绍了Python网络爬虫Scrapy框架的实战应用与技巧。首先讲解了如何创建Scrapy项目、定义爬虫、处理JSON响应、设置User-Agent和代理,以及存储爬取的数据。通过具体示例,帮助读者掌握Scrapy的核心功能和使用方法,提升数据采集效率。
60 6
|
18天前
|
设计模式 前端开发 数据库
Python Web开发:Django框架下的全栈开发实战
【10月更文挑战第27天】本文介绍了Django框架在Python Web开发中的应用,涵盖了Django与Flask等框架的比较、项目结构、模型、视图、模板和URL配置等内容,并展示了实际代码示例,帮助读者快速掌握Django全栈开发的核心技术。
108 45
|
9天前
|
数据采集 机器学习/深度学习 人工智能
Python编程入门:从基础到实战
【10月更文挑战第36天】本文将带你走进Python的世界,从基础语法出发,逐步深入到实际项目应用。我们将一起探索Python的简洁与强大,通过实例学习如何运用Python解决问题。无论你是编程新手还是希望扩展技能的老手,这篇文章都将为你提供有价值的指导和灵感。让我们一起开启Python编程之旅,用代码书写想法,创造可能。
|
11天前
|
数据库 Python
异步编程不再难!Python asyncio库实战,让你的代码流畅如丝!
在编程中,随着应用复杂度的提升,对并发和异步处理的需求日益增长。Python的asyncio库通过async和await关键字,简化了异步编程,使其变得流畅高效。本文将通过实战示例,介绍异步编程的基本概念、如何使用asyncio编写异步代码以及处理多个异步任务的方法,帮助你掌握异步编程技巧,提高代码性能。
33 4
|
10天前
|
机器学习/深度学习 数据可视化 数据处理
Python数据科学:从基础到实战
Python数据科学:从基础到实战
18 1
|
11天前
|
机器学习/深度学习 JSON API
Python编程实战:构建一个简单的天气预报应用
Python编程实战:构建一个简单的天气预报应用
28 1
|
14天前
|
前端开发 API 开发者
Python Web开发者必看!AJAX、Fetch API实战技巧,让前后端交互如丝般顺滑!
在Web开发中,前后端的高效交互是提升用户体验的关键。本文通过一个基于Flask框架的博客系统实战案例,详细介绍了如何使用AJAX和Fetch API实现不刷新页面查看评论的功能。从后端路由设置到前端请求处理,全面展示了这两种技术的应用技巧,帮助Python Web开发者提升项目质量和开发效率。
29 1
|
14天前
|
缓存 测试技术 Apache
告别卡顿!Python性能测试实战教程,JMeter&Locust带你秒懂性能优化💡
告别卡顿!Python性能测试实战教程,JMeter&Locust带你秒懂性能优化💡
30 1