蚂蚁金服共享智能平台荣获“世界人工智能产业安全十大创新实践”

简介: 8月30日,在2019世界人工智能大会上,蚂蚁金服共享智能平台荣获“世界人工智能产业安全十大创新实践”。

8月30日,在2019世界人工智能大会上,蚂蚁金服共享智能平台荣获“世界人工智能产业安全十大创新实践”。此奖项由中国科学院院士何积丰、上海市经济与信息化委员会副主任傅新华联合颁发,案例集也在此次大会的“世界人工智能安全高端对话”分论坛上隆重发布。

据悉,世界人工智能大会是由国家发改委、科学技术部、工业和信息化部、国家互联网信息办公室、中国科学院、中国工程院和上海市人民政府共同主办。大会集聚全球人工智能领域最具影响力的科学家和企业家,吸引龙头生态企业和行业创新企业参会参展,是具有国际水平和影响力的行业交流平台。

今年是世界人工智能大会首次公开征集人工智能安全创新实践案例。本次案例征集活动由上海市人工智能产业安全专家咨询委员会进行专业评审,评委包括中国科学院院士何积丰、同济大学副校长蒋昌俊、上海市法学会专职副会长施伟东等,确保了征集活动的公平、公正、专业和权威。

蚂蚁金服自2015年开始致力于共享智能平台的技术研发,用于帮助不同机构在满足用户隐私保护、数据安全和政策法规的要求下,进行数据共享训练和预测。共享智能平台可在安全、可信、公允的数据环境中,基于人工智能共享学习技术完成多方数据共创,解决数据共享与隐私数据保护的问题;并能够提供数据接入、数据连接、数据加工及挖掘等一站式数据服务能力,覆盖大数据探索和研究的全链路需求。

该平台具有安全可靠性、高可扩展性、完备性以及易用性等特点,具有覆盖场景面广,支持算法丰富,支持工业化、规模化发展等优势。既能够充分实现数据持有节点间互联合作,又可保证数据安全和隐私保护。

目前蚂蚁金服共享智能平台已应用在蚂蚁金服内部及合作伙伴方的智能信贷、智能风控等业务领域中。

据了解,蚂蚁金服共享智能平台曾荣获2019中国人工智能峰会“紫金产品创新奖”, 2019全球人工智能创业者大会“GAISC Award 2019 应用案例示范奖”等多个奖项,这也体现了业界对蚂蚁金服共享智能技术和平台的认可。

相关文章
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能的边界拓展:从理论到实践的飞跃####
本文探讨了人工智能(AI)技术的最新进展,特别是深度学习领域的创新如何推动AI从理论研究走向广泛应用。通过分析几个关键领域的实际应用案例,如医疗健康、自动驾驶和自然语言处理,本文揭示了AI技术的潜力及其对社会和经济的深远影响。文章还讨论了当前面临的挑战,包括伦理问题和技术瓶颈,并展望了未来的发展趋势。 ####
|
13天前
|
机器学习/深度学习 人工智能 算法
人工智能与机器人的结合:智能化世界的未来
人工智能与机器人的结合:智能化世界的未来
104 32
|
18天前
|
机器学习/深度学习 人工智能 安全
CCF-CV企业交流会:打造大模型时代的可信AI,探索AI安全治理新路径
近日,由中国计算机学会计算机视觉专委会主办的《打造大模型时代的可信AI》论坛顺利举行。论坛邀请了来自上海交通大学、中国科学技术大学等机构的专家,从立法、监管、前沿研究等多角度探讨AI安全治理。合合信息等企业展示了图像篡改检测等技术,助力AI向善发展。
57 11
CCF-CV企业交流会:打造大模型时代的可信AI,探索AI安全治理新路径
|
29天前
|
机器学习/深度学习 人工智能 运维
人工智能在云计算中的运维优化:智能化的新时代
人工智能在云计算中的运维优化:智能化的新时代
131 49
|
7天前
|
机器学习/深度学习 人工智能 安全
阿里云先知安全沙龙(武汉站) ——AI赋能软件漏洞检测,机遇, 挑战与展望
本文介绍了漏洞检测的发展历程、现状及未来展望。2023年全球披露的漏洞数量达26447个,同比增长5.2%,其中超过7000个具有利用代码,115个已被广泛利用,涉及多个知名软件和系统。文章探讨了从人工审计到AI技术的应用,强调了数据集质量对模型性能的重要性,并展示了不同检测模型的工作原理与实现方法。此外,还讨论了对抗攻击对模型的影响及提高模型可解释性的多种方法,展望了未来通过任务大模型实现自动化漏洞检测与修复的趋势。
|
6天前
|
人工智能 安全 算法
PAI负责任的AI解决方案: 安全、可信、隐私增强的企业级AI
在《PAI可信AI解决方案》会议中,分享了安全、可信、隐私增强的企业级AI。会议围绕三方面展开:首先通过三个案例介绍生活和技术层面的挑战;其次阐述构建AI的关键要素;最后介绍阿里云PAI的安全功能及未来展望,确保数据、算法和模型的安全与合规,提供全方位的可信AI解决方案。
|
13天前
|
人工智能 安全 机器人
OpenAI重拾规则系统,用AI版机器人定律守护大模型安全
在人工智能领域,大语言模型(LLM)展现出强大的语言理解和生成能力,但也带来了安全性和可靠性挑战。OpenAI研究人员提出“规则基于奖励(RBR)”方法,通过明确规则引导LLM行为,确保其符合人类价值观和道德准则。实验显示,RBR方法在安全性与有用性之间取得了良好平衡,F1分数达97.1。然而,规则制定和维护复杂,且难以完全捕捉语言的多样性。论文:https://arxiv.org/pdf/2411.01111。
53 13
|
9天前
|
数据采集 人工智能 智能设计
首个!阿里云人工智能平台率先通过国际标准认证
首个!阿里云人工智能平台率先通过国际标准认证
50 7
|
6天前
|
机器学习/深度学习 人工智能 算法
人工智能平台年度技术趋势
阿里云智能集团研究员林伟在年度技术趋势演讲中,分享了AI平台的五大方面进展。首先,他介绍了大规模语言模型(LLM)训练中的挑战与解决方案,包括高效故障诊断和快速恢复机制。其次,探讨了AI应用和服务的普及化,强调通过优化调度降低成本,使AI真正惠及大众。第三,提出了GreenAI理念,旨在提高AI工程效率,减少能源消耗。第四,讨论了企业级能力,确保数据和模型的安全性,并推出硬件到软件的全面安全方案。最后,介绍了整合多项核心技术的Pai Prime框架,展示了阿里云在自主可控AI核心框架下的整体布局和发展方向。
|
9天前
|
机器学习/深度学习 传感器 人工智能
开源AI视频监控系统在监狱安全中的应用——实时情绪与行为分析、暴力预警技术详解
针对监狱环境中囚犯情绪波动和复杂人际互动带来的监控挑战,传统CCTV系统难以有效预警暴力事件。AI视频监控系统基于深度学习与计算机视觉技术,实现对行为、情绪的实时分析,尤其在低光环境下表现优异。该系统通过多设备协同、数据同步及自适应训练,确保高精度识别(95%以上)、快速响应(<5秒),并具备24小时不间断运行能力,极大提升了监狱安全管理的效率与准确性。